

 1

1. Introduction

In a multiprogramming environment, many jobs or processes are loaded into the
main storage simultaneously. In such a system, processes of varying sizes and
execution times are created as per user requirements. These processes compete
for main memory for their execution. In some implementations of
multiprogramming systems, the system allocates memory in variable sized blocks.
Examples of these systems include variable partition multiprogramming with
contiguous allocation in earlier systems and more recently, virtual memory
systems using segmentation. In these systems, some criteria are needed to decide
where to place the incoming block in memory. The choice of a strategy
determines the job turnaround time, the storage utilization and extent of
fragmentation.

1.1 Storage Placement Strategies

The operating system maintains a list of available block sizes, called the free-
storage list and the queue of waiting processes. At any time, there is a set of
holes, of various sizes, scattered throughout memory. When a process arrives and
needs memory, the free-storage list is searched for a hole that is large enough for
this process. If the hole is larger than the process, the remaining hole is returned
to the free-storage list. If no hole is large enough for the incoming process, the
process waits in the queue. When a process terminates, it releases its block of
memory, which is then placed back in the set of holes. If the new hole is adjacent
to other holes, these adjacent holes are merged to form a single large hole. At this
point, the queue can be checked to see if memory requirements of waiting
processes can be met. The problem is how to select a hole from a list of free-
storage. There are many solutions to this problem. The set of holes is searched to
determine which hole is best to allocate. First-fit, best-fit and worst-fit are the
most common strategies used to select a free hole from the set of available holes.

First-Fit Strategy: An incoming job is placed in the main storage in the first
available hole large enough to hold it. The free-storage list is searched from the
beginning. Searching is stopped as soon as a free hole that is large enough is
found. First-fit has intuitive appeal in that it allows the placement decision to be
made quickly.

Best-Fit Strategy: An incoming job is placed in the hole in main storage in which
it fits most tightly and leaves the smallest amount of unused space. Unless the
storage-list is kept in ascending order by size, the entire list must be searched.

Worst-Fit Strategy: An incoming job is placed in the largest available hole.
Again, the entire storage-list must be searched, unless it is sorted by size. This
strategy produces the largest leftover hole, which may be more useful than the
smaller leftover hole from a best-fit approach.

 2

1.2 Simulation

Simulations are used to get an accurate evaluation of various algorithms in a
particular environment. Simulations involve programming a model of the
computer system. Software data structures represent the major components of the
system. The simulator has a variable representing a clock; as this variable’s value
is increased, the simulator modifies the system state to reflect the activities of the
system. As the simulation executes, statistics that indicate algorithm performance
are gathered and printed.

The data to drive the simulation can be generated in several ways. The most
common method uses a random-generator, which is programmed to generate
processes, CPU burst times, arrivals, departures, and so on, according to
probability distributions.

2. The Simulation Model

The purpose of the simulation program is to investigate the relative effectiveness
of the first-fit, best-fit and worst-fit storage placement strategies. The program
measures storage utilization, and the average job turnaround time for the various
storage placement strategies. The following sections describe the system model
and the implementation structure.

2.1 Overall Structure

The simulation models a multi-programmed, variable-partitioned real memory
system with a real memory of 1.5 M-byte capacity of which 300K is reserved for
the operating system. New jobs arrive at random intervals between 1 and 10
minutes (in multiples of 1 minute), the size of the jobs are random between 50K
and 300K in multiples of 10K, and the duration range from 5 to 60 minutes in
multiples of 5 minutes in units of one minute.

The simulation clock runs in units of minutes. The simulator has a variable that
tells the program when to create a new process. Each running process is executed
a minute at a time, until its duration is over. All the waiting processes have their
waiting time incremented a minute at a time, until a process is allocated to
memory. It then starts its execution. To manage simulation activities, the
program maintains four lists, namely, the free-storage list, the used-storage list,
the list of active processes and the list of suspended processes.

The processes that have been allocated to memory are called running processes
and reside in the list of active processes. These processes are executed by the
system. It is assumed that all the active processes can be executed in parallel
simultaneously in one time slot. This assumption implies that sufficient
processors are available. The processes that cannot be allocated to memory, due
to fragmentation, are called waiting processes and reside in the list of suspended

 3

processes. These processes cannot be executed and are kept waiting until
memory is available. The simulation keeps track of memory usage with a used-
storage list. All the allocated processes are recorded in this list. The free-storage
list keeps track of available memory blocks.

Since the goal of the simulation is to evaluate average job turnaround time and
storage utilization for each placement policy, the effects of scheduling policy and
allocation overheads has been ignored to make modeling easier and the results
simple to interpret. The turnaround time for each waiting process is measured
only as the waiting time. Also, this waiting time is only affected by the
unavailability of the memory and not by processor unavailability, since it is
assumed that all the active processes are executed simultaneously. Also, the
activity of new job creation also takes place in parallel.

2.2 Software Structure

The program has been designed in an object-oriented fashion. Each major
component of the system has been modeled as a class. The figure below shows
the structure of classes used. The next figure shows the class relationships.

Process
int ProcessID
int BlockSize
int Duration
int executionTime
int turnAroundTime
boolean Allocated
int globalID
int avgTurnAround

updateState()

processManager
Vector activeList
Vector suspendedList
int creationTime
int Time
AllocationManager AM

updateTime()
updateSuspendedList()
updateActiveList()
getSU()

freeNode
long Address
int blockSize

usedNode
int ProcessID
long Address
int blockSize

allocationManager
Vector usedList
Vector freeList

allocateFirstFit()
allocateWorstFit()
allocateBestFit()
Deallocate()

allocateFirstFit()
allocateWorstFit()
allocateBestFit()
Deallocate()

Simulation
int Time
ProcessManager PM

allocateFirstFit()
allocateWorstFit()
allocateBestFit()

triggerEvents()

 4

The class Process models a process in the system. It contains all necessary
variables to hold the state of the process. The Process class is responsible for
updating the state of the process, that is, its execution time or its turnaround time.

The class processManager is responsible for creating new processes, updating the
state of all active and suspended processes. It maintains two lists of active and
suspended processes and a variable that stores the next creation time of a new
process. When a process is created, it is placed by default in suspended list.
When an active process finishes execution, it is destroyed i.e. removed from the
activeList. For each suspended process, the processManager checks if it can be
allocated to memory. If the process is allocated, it is removed from the
suspendedList and placed in the activeList.

The class allocationManager is responsible for allocating waiting processes and
de-allocating processes that have finished execution. It maintains the usedList
that keeps track of allocated processes and a freeList that implements the free-
storage list.

The class Simulation serves as the main class which instantiates the
processManager object and initiates the simulation run.

The next section states the simulation algorithm used. This algorithm has been
implemented with the help of above mentioned data structures and classes.

Simulation

processManager activeProcesses suspendedProcesses

allocationManager

freeList usedList

 5

2.3 Simulation Algorithm

 while(true)do
 begin
 SimulationTime = SimulationTime + 1;
 if(time to create new process)
 begin
 createnewprocess();
 addtosuspendedlist;
 getnextcreationtime;
 end
 while(there are active processes) do
 begin
 { for each active process }
 executiontime = executiontime + 1;
 if(execution is over)then
 begin
 deallocate();
 removefromactivelist;
 end
 end
 while(there are waiting processes)do
 begin
 { for each waiting process }
 if(allocatememory(process)==true)then
 begin
 removefromsuspendedlist;
 addtoactivelist;
 end
 else

turnaroundtime =
turnaroundtime + 1;

 end
 displaysimulationstate();
 printstatistics();
 end

3. Conclusions

3.1 Implementation Difficulties

The first-fit approach requires that the free list should be ordered according to
increasing memory addresses to facilitate searching for the first block large

 6

enough. The best-fit and worst-fit approaches require that the free list be sorted
according to block sizes.

When a block of memory is freed, it must be determined whether there are
adjacent free blocks of memory to implement coalescing of holes. If the free list
is not ordered according to memory addresses, it becomes complicated and very
inefficient to determine the adjacent free blocks of storage. For this reason, to
facilitate the de allocation process, the free-storage list is always kept in order of
memory addresses. This, however, requires that the free-storage list must be
completely traversed each time an allocation is made using best-fit or the worst-fit
approach.

3.2 Comparison of the Three Strategies

Each of the methods has certain characteristics that make it either desirable or
undesirable for various request patterns. An advantage of the best-fit method over
first-fit is that very large free blocks remain unsplit so that requests for larger
blocks can be satisfied. On the other hand, the best-fit method may not be able to
fulfill certain requests as the remaining unallocated portions of memory are
smaller under best-fit than under first-fit.

The philosophy behind worst-fit method is that by using a small number of very
large blocks repeatedly to satisfy the majority of requests, many moderately sized
blocks will be left unfragmented. Thus, this method is supposed to satisfy a larger
number of requests than the other methods, unless most of the requests are for
very large portions of memory.

3.3 Implementation Preference

The ease of implementation of first-fit, and the overheads involved with the best-
fit and worst-fit methods, make the first-fit approach the obvious choice.
Compared to the best-fit and worst-fit approaches, the implementation of first-fit
requires the minimum traversal of the free list, and its implementation is also
conducive to efficient implementation of coalescing holes, since both require that
the free list be ordered according to increasing order of memory addresses.

3.4 Improvements in the First-Fit Strategy

There are several improvements that can be made in the first-fit method. If the
size of a free block is only slightly larger than the size of the block to be allocated,
the portion of the free block that remains free after allocation is very small. Very
often this remaining portion is so small that there is little likelihood of its being
used before the allocated portion is freed and the two portions are recombined.
Thus there is little benefit achieved by leaving that small portion on the free list.
Leaving the small portion on the free list would merely increase the overheads
involved in searching the list.

 7

To avoid very small sized blocks on the free list, no block should be added if its
size is below some reasonable minimum. If a free block is about to be split and
the remaining portion is below this minimum size, the block is not split. Instead,
the entire free block is allocated as though it were exactly the right size. This
allows the system to remove the entire block from the free list and does not clutter
up the list with very small blocks.

In our simulation, we have assumed that there are no overheads associated with
list searching or data transfer. Thus we have not used this technique, as it is
irrelevant when attempting to highlight only the relative merits and demerits of
the various algorithms, without considering implementation details.

Another significant improvement in the first-fit method can be made. As time
goes on, smaller free blocks will tend to accumulate near the front of the free list.
This is because a large block near the front of the list is reduced in size before a
large block near the back of the list. Thus, in searching for a large or even a
moderate-size block, the small block near the front cannot be used. The algorithm
would be more efficient if the free list were organized as a circular list whose first
element varies dynamically as blocks are allocated. This approach is called the
next-fit strategy in which the search for the free block begins where the free
pointer indicates. As soon as a block is found, space is allocated and the free
pointer is adjusted to point to the new fragment. Or if there is no fragment, to the
block that follows the allocated block.

3.5 Simulation Results

Considering the graph of average turnaround time, the following facts can be
stated:

1. The performances of all algorithms are approximately similar. But still we

see that first fit has the lowest average turnaround time, followed by best
fit, next fit and finally worst fit.

2. It is also seen that the variations in turnaround time are similar for all
algorithms.

3. There are two sharp rises in turnaround time before steady state is
achieved. These rises may be due to high arrival rates of processes, low
departure rates and/or relatively larger allocation requests.

Initially we expected next fit to perform best followed by first fit, best fit and
finally worst fit. However, the possible reason for the observed deviation may be
that key factors such as allocation overheads have been ignored, that must be
considered in practical implementations.

 8

As for the graph of memory utilization, no meaningful distinction between the
performance of any algorithm can be found. However, it is worth mentioning that
since all algorithms have very similar utilization pattern, the one that has the
minimum average turnaround time would be the most suitable.

