Modeling Combinational Logic

Lab # 8

LAB #8

1. MODELING COMBINATIONAL LOGIC

2. OBJECTIVE

To study techniques of synthesizing combinational logic.

3. THEORY
This lab demonstrates the different ways in which purely combinational logic may be modeled. The types of combinational logic circuit commonly used in digital design include:

· Logical/arithmetic equations

· Logical structure control

· Multiplexers

· Encoders

· Priority encoders

· Decoders

· Comparators

· ALUs

These more standard functional types of circuit are used in both control and datapath structures. Typically each circuit type can be modeled in different ways using if, case, and for statements etc.

Note, that when modeling combinational logic, the sensitivity list of an always statement must contain all inputs used in the particular statement. If it does not, the model will still synthesize correctly, but may not simulate correctly. This is because always statements are concurrent and will not be triggered into being executed when the omitted signals change, and means the output signals will not be updated.

Interpretation of Some Constructs

Let us try to understand how logic synthesis tools frequently interpret these constructs and translate them to logic gates.

The assign statement

The assign construct is the most fundamental construct used to describe combinational logic at an RTL level. Given below is a logic expression that uses the assign statement.

assign out = (a & b) | c;

This will frequently translate to the following gate-level representation.

[image: image1.png]

If a, b, c, and out are 2-bit vectors [1:0], then the above assign statement will frequently translate to two identical circuits for each bit.

[image: image2.png]a—

b—o|

out

If arithmetic operators are used, each arithmetic operator is implemented in terms of arithmetic hardware blocks available to the logic synthesis tool. A 1-bit full adder is implemented below

assign {c_out, sum} = a + b + c_in;

Assuming that the 1-bit full adder is available internally in the logic synthesis tool, the above assign statement is often interpreted by logic synthesis tools as follows.

[image: image3.png]out[0]

outf1}

If a multiple-bit adder is synthesized, the synthesis tool will perform optimization and the designer might get a result that looks different from the above figure.

4. [image: image4.png]_in

N

]
HRM

5. If a conditional operator ? is used, a multiplexer circuit is inferred as shown in the figure above.

assign out = (s) ? i1 : i0;

6. It frequently translates to the gate-level representation shown in the figure above.

The if-else statement

Single if-else statements translate to multiplexers where the control signal is the signal or variable in the if clause.

if(s)

 out = i1;

else

 out = i0;

The above statement will frequently translate to the gate-level description shown in the figure above. In general, multiple if-else statements do not synthesize to large multiplexers.

The case statement

The case statement also can be used to infer multiplexers. The above multiplexer would have been inferred from the following description that uses case statements.

case (s)

 1’b0 : out = i0;

 1’b1 : out = i1;

endcase

The always statement

For combinational logic, the always statement must be triggered by a signal other than the clk, reset, or preset. For example, the following block will be interpreted as a 1-bit full adder.

always @(a or b or c_in)

{c_out, sum} = a + b + c_in;

7. EXAMPLES
Example 8.1: Equations modeled using continuous assignments
Logical and arithmetic equations are modeled using continuous data flow assignments, incorporating both logical and arithmetic operators. Both concurrent (outside always) and sequential (inside always) assignments are shown.

module SIMPLE_DATA_FLOW (A1, A2, B2, C2, D2, E2, Y1, Y2);

input [7:0] A1;

input [1:0] A2, B2, C2, D2, E2;

output Y1;

output [3:0] Y2;

reg
S1, S2;

reg [1:0] V1, V2;

reg [3:0] Y2;

always@(A1[3:0])
// Full sensitivity list

 begin

 V1 = {!(A1[0] | A1[1]), !(A1[2] | A1[3])};//sequential procedural assignments

 S1 = !(V1[0] & V1[1]);

 end

always@(A1[7:4])
// Full sensitivity list

 begin

 V2 = {!(A1[4] | A1[5]), !(A1[6] | A1[7])};//sequential procedural assignments

 S2 = !(V2[0] & V2[1]);

 end

assign Y1 = !(S1 | S2);
// Concurrent (continuous) assignments

always@(A2 or B2 or C2 or D2 or E2)
// Full sensitivity list

 Y2 = A2 + (B2 – C2) + (D2 * E2);
// Warning: The multiplier operation is

// not an efficient way of inferring a

// combinational multiplier circuit

endmodule
Example 8.2: Modeling Styles of a 4-1 Multiplexer

Three ways of modeling a 4-1 multiplexer are indicated. They are

1. One if statement with multiple else/else if clauses,

2. Nested if statements,

3. case statement

[image: image5.png]Sel(1:0}

All models synthesize to the same circuit as shown.

There is no incorrect modeling method, however using the case statement requires less code and is easier to read when compared with the if statement. This becomes more distinct with increasing inputs per output.

module MUX4_1 (Sel, A, B, C, D, Y);

input [1:0] Sel;

input A, B, C, D;

output Y;

reg Y;

Style one:

always@(Sel or A or B or C or D)

if(Sel==2’b00)
// Using an if statement is not as clear as

 Y = A;
// using case

 else if(Sel==2’b01)

 Y = B;

 else if(Sel==2’b10)

 Y = C;

 else

 Y = D;

Style two:

always@(Sel or A or B or C or D)

 if(Sel[1]==0)

 // Statement can also be written as if(!Sel[1])

 if(Sel[0] == 0) // Using nested if statements also not so clear

 Y = A;

 else

 Y = B;

 else

 if(Sel[0] == 0)

 Y = C;

 else

 Y = D;

Style three:
always@(Sel or A or B or C or D)

case(Sel)
// Multiplexer selection very clear using a

 2’b00: Y = A;

// case statement

 2’b01: Y = B;

 2’b10: Y = C;

 2’b11: Y = D;

 default: Y = A;

 endcase

endmodule
8. EXERCISES
9. Encoders are used to encode discrete data into a coded form and decoders are used to convert it back into its original undecoded form. An encoder that has 2n (or less) input lines encodes input data to provide n encoded output lines. The truth table for an 8-3 binary encoder (8 inputs and 3 outputs) is shown. It is assumed that only one input has a value of 1 at any given time, otherwise the output has some undefined value and the circuit is meaningless.

Inputs
Outputs

A7
A6
A5
A4
A3
A2
A1
A0
Y2
Y1
Y0

0
0
0
0
0
0
0
0
X
X
X

0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1
1

0
0
0
1
0
0
0
0
1
0
0

0
0
1
0
0
0
0
0
1
0
1

0
1
0
0
0
0
0
0
1
1
0

1
0
0
0
0
0
0
0
1
1
1

Hint: The truth table can be modeled using the if, case or for statements.

10. The operation of the priority encoder is such that if two or more single bit inputs are at a logic 1, then the input with the highest priority will take preference, and its particular coded value will be output. An 8-3 priority encoder is modeled in several ways to the truth table shown. The most significant bit, A7, has the highest priority. The output signal Valid indicates that at least one input bit is at logic 1 and signifies the 3-bit output Y is valid.

Inputs
Outputs

A7
A6
A5
A4
A3
A2
A1
A0
Y2
Y1
Y0
Valid

0
0
0
0
0
0
0
0
X
X
X
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
X
0
0
1
1

0
0
0
0
0
1
X
X
0
1
0
1

0
0
0
0
1
X
X
X
0
1
1
1

0
0
0
1
X
X
X
X
1
0
0
1

0
0
1
X
X
X
X
X
1
0
1
1

0
1
X
X
X
X
X
X
1
1
0
1

1
X
X
X
X
X
X
X
1
1
1
1

� EMBED Word.Picture.8 ���

VLSI Design – VLSI

6

[image: image6.png]

_1055515236.doc
[image: image1.png]

