Modeling Synchronous Circuits II

Lab # 10

Lab 10

MODELING SYNCHRONOUS LOGIC CIRCUITS II

OBJECTIVE

To study synthesis techniques of synchronous circuits such as flip-flops and counters.
THEORY

The D- Type Flip-Flop
The D type flip-flop is an edge trigged memory device (cell primitive) that transfers a signal’s value on its D input, to its Q output, when an active edge transition occurs on its clock input. The output value is held until the next active clock edge. The Q bar output signal is always the inverse of the Q output signal, see fig 10.1. A bank of flip-flops clocked from a common clock signal is often referred to as a register.

[image: image1.png]
Fig 10.1: The edge triggered D-type flip-flop

Like the latch, there are usually many variants of the flip-flop in an ASIC or FPGA technology library. A flip-flop may have a rising or falling edge triggered clock. It may, or may not, have preset and clear inputs which may be active high or low, and inputs which may be active high or low, and which may be synchronous or asynchronous with clock.

Verilog flip-flop inference

Flip-flops are inferred using edge triggered always statements. The Verilog always statement is edge-triggered by including either a posedge or a negedge clause in event list. Combinational logic may be modeled on the inputs to the flip-flops, but independent combinational logic may not be modeled in the same always statement. Purely combinational logic must be modeled in a separate always statement.

Example sequential always statements:

always @(posedge Clock)

always @(negedge Clock)

always @(posedge Clock or posedge Reset)

always @(posedge Clock or negedge Reset)

always @(negedge Clock or posedge Reset)

always @(negedge Clock or negedge Reset)
If an asynchronously reset flip-flop is being modeled a second posedge or negedge clause is needed in the event list of always statement. Also, most synthesis tools require that the reset must be used in an if statement directly following the always statement, or after the begin if it is in a sequential begin-end block. For example,

//Active low asynchronous reset

always @(posedge Clock or negedge Reset)

 begin

 if(!Reset)

…

…

 end

Example 1 Shows Verilog synchronous always statements used to model flip-flops with a positive or negative edge triggered clock.

Example 10.1: Flip-Flops (+ve / -ve clocked)

module FF_POS_NEG_CLK (Clock, A1, A2, Y1, Y2);

input Clock;

input A1, A2;

output Y1, Y2;

reg Y1, Y2;

always @ (posedge Clock ?)

Y1= A1;

always @ (negedge Clock)

 Y2= A2;

endmodule

Example 10.2 Various flip-flop models
Different flip-flops with enable inputs, and asynchronous and synchronous resets are modeled. The coding style conforms to that described in earlier section. An ASIC library, or more probably an FPGA library, may not have all the flip-flop types modeled in this example. This means extra logic gates are inferred with a flip-flop that is in the library to ensure the synthesized circuit maintains correct functionality.
module FLIP_FLOPS (Clock, SynReset1, SynReset2, AsynReset1, AsynReset2, Enable1, Enable 2, Data1, Data2, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9);

 input Clock,

 SynReset1, SynReset2,

 AsynReset1, AsynReset2

 Enable1, Enable2,

 Data1, Dta2;

 output Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9;

 reg Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9;

 always @ (posedge Clock)

 begin
//single Synchronous reset

if (!SynReset1)

Y1=0;

else

Y1= Data1 & Data2;

if (!SynReset1 || SynReset2)
// 2 Synchronous resets (1 +ve & 1 -ve)

Y2=0;

else

Y2= Data1 || Data2;

end

always @(posedge Clock or negedge AsynReset1)// single -ve asynchronous reset

if(!AsynReset1)

 Y3=0;

else

 Y3= Data1 & Data2;

always @(posedge Clock or posedge AsynReset1 or negedge AsynReset2)

// 2 Synchronous resets (1 +ve & 1 -ve)

if(AsynReset1)

 Y4=0;

else if

if(!Asynreset2)

 Y4=0;

else

 Y4= Data1 & Data2;

end

always @(posedge Clock or negedge AsynReset1)

// one asynchronous (-ve) & one synchronous (+ve)resets

if(!AsynReset1)

 Y5=0;

else if

if(SynReset1)

 Y5=0;

else

 Y5= Data1 & Data2;

end

always @(posedge Clock)

// single enable

 if (Enable1)

Y6= Data1 & Data2;

always @ (Posedge Clock)

//two enables

 if(Enable1 || Enable2)

Y7= Data1 & Data2;

always@ (posedge Clock)

if (SynReset1)

Y8= 0;

Else if (Enable 1)

Y8=Data1 & Data2;

always@ (posedge Clock or posedge AsynReset1)

 if (AsynReset1)

Y9=0;

else if (SynReset1)

Y9=0;

else if (Enable1 || Enable2)

Y9= Data1 & Data2;

endmodule

[image: image2.png]

The synthesized circuit is shown below.

Example 10.3:
Combinational logic between two flip-flops
This example is similar to example 9.2 but infers flip-flops instead of latches. Two flip-flops are modeled with a single always statement.

module FLIP_FLOP_COMB (A, B, C, D, E, Y);

 input clock A, B, C, D, E;

 output Y;

 reg M, N;

 reg y;

always @(C or D)

 N=(C | D);

always @ (posedge Clock)

begin

// Siganl M assigned using a non-blocking signal assignment and

//then used in assignment of Y

M <= !(A& B);

Y<= ! (N | M | E);

end

endmodule

The synthesized circuit is shown below

[image: image3.png]
Counters
Deciding on a counter's structure and modeling

There are many ways in which a counter can be implemented depending upon the the design requirements. Some options follow depending upon whether a synchronous or asynchronous counter is needed.

1-
Synchronous counters

All flip-flops in a synchronous counter receive the same clock pulse and so change state simultaneously, that is synchronously. The simplest & most common type of a synchronous incrementing or decrementing binary counter is modeled by adding or subtracting a constant 1 using the "+" or "-" arithmetic operators in assignments residing in a section of code inferring synchronous logic.

2-
Asynchronous counters

Sometimes called ripple counters because flip-flop transitions ripple through from one flip-flop to the next in sequence until all flip-flops reach a new stable value (state). Each single flip-flop stage divides the frequency of its input signal by two.

Example 10.4:
5 bit up-by-one down-by-two counter

This 5 bit counter counts up-by-one when Up is a logic 1 and down-by-two when Down is a logic 1. For all other conditions of Up & Down the counter will hold its value. The synchronous reset (Reset) overrides the Up & Down signals and sets the counter to zero.

A case statement of the concatenation of Up & Down makes the model easy to read.
module CNT_UP1_DOWN2(Clock, Reset, Up, Down, Count);

 input Clock, Reset, Up, Down;

 output [4:0] Count;

 reg
 [4:0] Count;

 reg [1:0] UpDown;

always @ (posedge Clock)

 begin

if(Reset)

 Count=0;

else

case ({Up, Down})

2'b 00 : Count = Count;

2'b 10 : Count = Count + 1;

2'b 01 : Count = Count - 2 ;

default : Count = Count;

endacse

end

endmodule

Example 10.5: Divide by 16 clock divider using an asynchronous (ripple) counter
This asynchronous ripple counter divides an input clock by 16. It has 4 ripple stages each consisting of a D type flip-flop whose output is connected back to its D input such that each stage divides a particular input clock by two. Circuits like this are often seen with the Q bar output fed back to D input. As seen by the synthesized circuit Q output is fed back to the D inverter. This is deliberate to minimize the potential of violating flip-flop set-up times. The 4 stages provide an overall divide by 16 of the input clock. A fifth flip-flop synchronizes the asynchronous divided by 16 clock DIV16, back to the source clock Clock.
module CNT_ASYN_CLK_DIV16(Clock, Reset, Y);

 input Clock, Reset;

 output Y;

 reg Div2, Div4, Div8, Div16, Y;

always @ (negedge Clock or negedge Reset)

 if(!Reset)

 Div2 = 0;

 else

 Div2 = !Div2;

always @ (negedge Div2 or negedge Reset)

if(!Reset)

 Div4 = 0;

 else

 Div4 = !Div4;

always @ (negedge Div4 or negedge Reset)

if(!Reset)

 Div8 = 0;

 else

 Div8 = !Div8;

always @ (negedge Div8 or negedge Reset)

if(!Reset)

 Div16 = 0;

 else

 Div16 = !Div16;

//Resynchronizes back to Clock

always @ (negedge Clock or negedge Reset)

if(!Reset)

 Y = 0;

 else

 Y = Div16;

endmodule

[image: image4.png]The synthesized circuit is shown below.

VLSI Design – VLSID

1

