Verilog Basics and Using the Design Tool

Lab # 2

LAB #2

VERILOG BASICS AND USING THE DESIGN TOOL

OBJECTIVE
Understanding the basic Verilog syntax and data types and getting familiar with the design environment.

THEORY

Lexical Conventions
The basic lexical conventions used by Verilog HDL are similar to those in the C programming language. Verilog HDL is a case-sensitive language. All keywords are in lowercase.

Here we will only discuss some of the lexical conventions that are new to Verilog. For a detailed reference, Verilog Language Reference manual or any other reference on Verilog may be consulted.

Number Specification

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as

<size> ‘<base format> <number>

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are decimal (‘d or ‘D), hexadecimal (‘h or ‘H), binary (‘b or ‘B) and octal (‘o or ‘O). The number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a particular base. Uppercase letters are legal for number specification.

4’b1111

// This is a 4-bit binary number

12’habc

// This is a 12-bit hexadecimal number

16’d255

// This is a 16-bit decimal number

Unsized numbers

Numbers that are specified without a <base format> specification are decimal numbers by default. Numbers that are written without a <size> specification have a default number of bits that is simulator- and machine specific (must be at least 32).

23456

// This is a 32-bit decimal number by default

‘hc3

// This is a 32-bit hexadecimal number

‘o21

// This is a 32-bit octal number

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very important for modeling real circuits. An unknown value is denoted by x. A high impedance value is denoted by z.

12’h13x
// This is a 12-bit hex number; 4 least significant bits unknown

6’hx

// This is a 6-bit hex number

32’bz

// This is a 32-bit high impedance number

An x or a z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base, and one bit for a number in the binary base. If the most significant bit of a number is 0, x, or z, the number is automatically extended to fill the most significant bits, respectively, with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero extended.

Negative numbers

Putting a minus sign before the size for a constant number can specify negative numbers. Size constants are always positive. It is illegal to have a minus sign between <base format> and <number>.

-6’d3

// 8-bit negative number stored as 2’s complement of 3

4’d-2

// illegal specification

Data Types
Value Set

Verilog supports four values to model the functionality of real hardware. The four levels are listed in table 2-1.

Table 2.1: Value Levels

	Value Level
	Condition in Hardware Circuit

	0
	Logic zero, false condition

	1
	Logic one, true condition

	x
	Unknown value

	z
	High impedance, floating state

Nets

Nets represent connections between hardware elements. Just as in real circuits, nets have values continuously driven onto them by the outputs of devices that they are connected to. In figure 2.1, net a is connected to the output of and gate g1. Net a will continuously assume the value computed at the output of gate g1, which is b anded with c.

Nets are declared primarily with the keyword wire. Nets are one-bit values by default unless they are declared explicitly as vectors. The term wire and net are often used interchangeably. The default value of a net is z. Nets get the output value of their drivers. If a net has no driver, it gets the value z.

[image: image1.wmf]
Fig 2.1: Example of Nets

wire a;

// Declare net a for the above circuit

wire b, c;

// Declare two wires b,c for the above circuit

wire d = 1’b0;
// Net d is fixed to logic value 0 at declaration

Registers

Registers represent storage data elements. Registers retain value until another value is placed onto them. Do not confuse the term registers in Verilog with hardware registers built from edge triggered flip-flops in real circuits. In Verilog, the term register merely means a variable that can hold a value. Unlike a net, a register does not need a driver. Verilog registers do not need a clock as hardware registers do. Values of registers can be changed anytime in a simulation by assigning a new value to the register.

Register data types are commonly declared by the key word reg. The default value for a reg data type is x. An example of how registers are declared and used is shown below:

reg reset;

// declare a variable that can hold its value

initial

// this construct will be discussed later

 begin

 reset = 1’b1;
// initialize reset to 1 to reset the digital circuit

 #100 reset = 1’b0; // after 100 time units reset is deasserted

 end

Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified, the default is scalar (1-bit).

wire a;

// scalar net variable, default

wire [7:0] bus;

// 8-bit bus

wire [31:0] busA, busB, busC;
// 3 buses of 32-bit width

reg clock;

// scalar register, default

reg [0:40] virtual_addr;

// vector register, 41-bits wide

Vectors can be declared at [high#:low#] or [low#:high#], but the left number in the square brackets is always the most significant bit of the vector. In the example shown above, bit 0 is the most significant bit of vector virtual_addr.

For the vector declarations shown above, it is possible to address bits or parts of vectors.

busA[7]

// bit # 7 of vector busA

bus[2:0]

// Three least significant bits of vector bus

bus[0:2]
// is illegal because the significant bit should always be // on the left of a range specification

virtual_addr[0:1]
// two most significant bits of vector virtual_addr

Modules

Verilog provides the concept of a module. A module is the basic building block in Verilog. A module can be an element or a collection of lower-level design blocks. A module provides the necessary functionality to the higher level blocks through its port interface (inputs and outputs), but hides the internal implementation. This allows the designer to modify module internals without affecting the rest of the design.

In Verilog, a module is declared by the keyword module. A corresponding keyword endmodule must appear at the end of the module definition. Each module must have a module_name, which is the identifier for the module, and a module_terminal_list, which describes the input and output terminals of the module.

module
<module_name> (<module_terminal_list>);

.

.

.

<module internals>

.

.

.

endmodule

For example, a T-flipflop could be defined as a module as follows:

Module T_FF (q, clock, reset);

.

.

.

<functionality of T-flipflop>

.

.

.

endmodule

Ports

Ports provide the interface by which modules can communicate with its environment. For example, the input/output pins of an IC chip are its ports. The environment can interact with the module only through its ports. The internals of the module are not visible to the environment. This provides a very powerful flexibility to the designer. The internals of the module can be changed without affecting the environment as long as the interface is not modified. Ports are also referred to as terminals.

Lists of Ports

A module definition contains as optional list of ports. If the module does not exchange any signals with the environment, there are no ports in the list.

Consider a 4-bit full adder that is instantiated inside top-level module Top. The diagram for the input/output ports is shown in Figure 2.2.

[image: image2.png]Top

a —=
b —p

C_in —p]

full
adder
(4 bit)

fulladdd

- Sum

— c_out

Fig 2.2: I/O Ports for Top and fulladd4

Notice that in the above figure, the module Top is a top level module. The module fulladd4 is instantiated below Top. The module fulladd4 takes input on ports a, b, and c_in and produces an output on ports sum and c_out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-level module in the simulation and does not need to pass signals to or receive signals from the environment. Thus, it does not have a list of ports. The module names and port lists for both module declarations in Verilog are as follows:

module fulladd4 (sum, c_out, a, b, c_in);
// Module with a list of ports

module Top;

// No list of ports, top-level module

Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows:

	Verilog Keyword
	Type of Port

	input
	Input port

	output
	Output port

	inout
	Bi-directional port

Each port in the port list is defined as input, output, or inout, based on the direction of the port signal. Thus, for the example of the fulladd4, the port declarations will be as shown below:

module fulladd4 (sum, c_out, a, b, c_in);

// Begin port declarations section

output [3:0] sum;

output c_out;

input [3:0] a, b;

input c_in;

// End port declarations section

…

<module internals>

…

endmodule

Note that all port declarations are implicitly declared as wire in Verilog. Thus, if port is intended to be a wire, it is sufficient to declare it as output, input, or inout. Input or inout ports as normally declared as wire. However, if output ports hold their value, they must be declared as reg. For example, consider a module for a D-type flip-flop:

module DFF (q, d, clk, reset);

output q;

reg g;

// Output port q holds value; therefore it is declared as reg

input d, clk, resetl

…

…

endmodule

Ports of the type input and output cannot be declared as reg because reg variables store values and input ports should not store values but simply reflect the changes in the external signals they are connected to.

Port Connection Rules

[image: image3.wmf]One can visualize a port as consisting of two units, one unit that is internal to the module another that is external to the module. The internal and external units are connected. There are rules governing port connections when modules are instantiated within other modules. The Verilog simulator complains if any port connection rules are violated.

Fig 2.3: Port Connection Rules

These rules are summarized in figure 2.3.

Inputs

Internally, input ports must always be of the type net. Externally, the inputs can be connected to a variable which is a reg or a net.

Outputs

Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected to a net. They cannot be connected to a reg.

Inouts

Internally, inout ports must be of the type net. Externally, inout ports must always be connected to a net.

Width matching

It is legal to connect internal and external items of different sizes when making inter-module port connections. However, a warning is typically issued that the widths do not match.

Instances

A module provides a template from which you can create actual objects. When a module is invoked, Verilog creates a unique object from the template. Each object has its own name, variables, parameters and I/O interfaces. The process of creating objects from a module template is called instantiation, and the objects are called instances. In the example below, which shows the module for a 4- bit ripple carry counter, four instances from the T-flipflop template are created. The internals of the T_FF module are not shown.

//
Define the top-level module called ripple carry counter. It

//
instantiates 4 T-flipflops.

module ripple_carry_counter (q, clk, reset);

output [3:0] q;

input clk, reset;

//
Four instances of the module T_FF are created. Each has a unique

//
name. Each instance is passed a set of signals. Notice that

//
each instance is a copy of the module T_FF

T_FF tff0(q[0], clk, reset);

T_FF tff1(q[1], q[0], reset);

T_FF tff2(q[2], q[1], reset);

T_FF tff3(q[3], q[2], reset);

endmodule

Components of a Simulation

Once a design block is completed, it must be tested. The functionality of a design block can be tested by applying stimulus and checking results. We call such a block the stimulus block. It is good practice to keep the stimulus and design block separate. The stimulus block can be written Verilog. A separate language is not required to describe stimulus. The stimulus block is also commonly called a test bench. Different test benches can be used to thoroughly test the design block.

Two styles of stimulus application are possible. In the first style, the stimulus block instantiates the design block and directly drives the signals in the design block. In figure 2.4, the stimulus block becomes the top-level block. It manipulates signal clk and reset, and checks and displays output signal q.

[image: image4.png]net t
net ¢inout

input output
- — .
reg or net net reg or net net

Fig 2.4:
Stimulus block instantiates design block

The second style of applying stimulus is to instantiates both the stimulus and design blocks in a top-level dummy module. The stimulus block interacts with the design block only through the interface. This style of applying stimulus is shown in Figure 2.5. The stimulus module drives the signal d_clk and d_reset in the design block. It also checks and displays signal c_q, which is connected to the signal q in the design block. The function of top-level block is simply to instantiate the design and stimulus blocks.

[image: image5.png](Stimulus block)
clk reset

{

(Design Block)
Ripple Carry
Counter

v

q

Fig 2.5: Stimulus and design block instantiated in a dummy top level module

Either stimulus style can be used effectively.

A Complete Example: 4-bit Ripple Carry Counter

To apply the concepts introduced in this lab, let us build the complete simulation of a ripple carry counter. We will define the design block and the stimulus block. We will apply stimulus to the design block and monitor the outputs.

[image: image6.png]Top-Level Block

d_clk
Stimulus
Block d_reset

cq

clk
reset Design Bloc
Ripple Carry|
ounter

The ripple carry counter shown in Figure 2.6 is made up of negative edge-triggered toggle flip-flops (T_FF). Each of the T_FFs can be made up from negative edge-triggered D-flipflops (D_FF) and inverters (assuming q_bar output is not available on the D_FF), as shown in figure 2.7.

Fig 2.6: Ripple Carry Counter

[image: image7.png]Rial:%l'e a0 ql q2 q?

Counter o

pap A DS RN I

|

d

: 9 q q q
clock —0) 7_FFy T_FF T_FF T_FH

| tf0 t6f1 2 tff3

Fig 2.7: T-flipflop

Design Block

We use a top-down design methodology. First, we write the Verilog description of the top-level design block, which is the ripple carry counter.

module ripple_carry_counter (q, clk, reset);

output [3:0] q;

input clk, reset;

T_FF tff0(q[0], clk, reset);

T_FF tff1(q[1], q[0], reset);

T_FF tff2(q[2], q[1], reset);

T_FF tff3(q[3], q[2], reset);

endmodule

In the above module, four instances of the module T_FF (T-flipflop) are used. Therefore, we must now define the internals of the module T_FF.

module T_FF (q, clk, reset);

output q;

input clk, reset;

wire d;

D_FF dff(q, d, clk, reset);

not n1(d, q);

endmodule

Since T_FF instantiates D_FF, we must now define the internals of module D_FF. We assume asynchronous reset for the D_FF.

// module D_FF with synchronous reset

module D_FF (q, d, clk, reset);

output q;

input d, clk, reset;

reg q;

// Lots of new constructs. Ignore the functionality of the constructs.

always@(posedge reset or negedge clk)

if(reset)

 q = 1’b0;

else

 q = d;

endmodule

All modules have been defined down to the lowest-level leaf cells in the design methodology. The design block is now complete.

Stimulus Block

[image: image8.png]

We must now write the stimulus block to check if the ripple carry counter design is functioning correctly. In this case, we must control the signals clk and reset so that the regular function of the ripple carry counter and the asynchronous reset mechanism are both tested. We use the waveforms shown in Figure 2.8 to test the design. Waveforms for clk, reset, and 4-bit output q are shown. The cycle time for clk is 10 units; the reset signal stays up from time 0 to 15 and then goes up again from time 195 to 205. Output q counts from 0 to 15.

Fig 2.8: Stimulus and output waveforms

The stimulus block that will create the waveforms shown in Figure 2.8 is shown below. Do not worry about the unfamiliar syntax at this point. Simply concentrate on how the design block is instantiated in the stimulus block.

module stimulus;

reg clk;

reg reset;

wire [3:0] q;

// instantiate the design block

ripple_carry_counter r1(q, clk, reset);

// Control the clk signal that drives the design block. Cycle time = 10

initial

 clk = 1'b0; //set clk to 0

always

 #5 clk = ~clk;
// toggle clk every 5 time units

// Control the reset signal that drives the design block

// reset is asserted from 0 to 20 and from 200 to 220

initial

begin

 reset = 1'b1;

 # 15 reset = 1'b0;

 # 180 reset = 1'b1;

 # 10 reset = 1'b0;

 # 20 $finish;
//terminate the simulation

end

// Monitor the outputs

initial

 $monitor($time, "Output q = %d", q);

endmodule
Once the stimulus block is completed, we are ready to run the simulation and verify the functional correctness of the design block. The output obtained when stimulus and design blocks are simulated is shown below:

 0 Output q = 0

 20 Output q = 1

 30 Output q = 2

.

.

.

150 Output q = 14

160 Output q = 15

170 Output q = 0

.

.

.

220 Output q = 2

� EMBED CDraw5 ���

VLSI Design

11

[image: image9.png]R e R R R el s e e
—L

reset

q3:0] T

_1055013670.unknown

