Dataflow Modeling

Lab # 4

LAB #4

DATAFLOW MODELING
OBJECTIVE

To model digital circuits in Verilog using the dataflow modeling technique.

THEORY
For small circuits the gate-level modeling approach works very well because the number of gates is limited and the designer can instantiate and can connect every gate individually. Also the gate-level modeling is very intuitive to a designer with basic knowledge of digital knowledge design. However, in complex designs the number of gates is very large. Thus, designers can design more effectively if they concentrate on implementing the function at a level of abstraction higher than gate-level. Data-Flow modeling provides a powerful way to implement a design. Verilog allows a circuit to be designed in terms of data flow between register and how a design processes data rather than instantiation of individual gates.

With gate densities on chips increasing rapidly, data-flow modeling has assumed great importance. No longer can companies devote engineering resources to handcrafting entire designs with gates. Currently, automated tools are used to create a gate-level circuit from a data-flow design description. This process is called logic synthesis. Data-flow modeling has become a popular design approach as logic synthesis tools have become sophisticated. This approach allows the designer to concentrate on optimizing the circuit in terms of data-flow. For maximum flexibility in the design process designers typically use a Verilog description style that combines the process of gate-level, data-flow and behavioral design. In the digital design community, the term RTL (Register Transfer Level) design is commonly used for a combination of data-flow modeling and behavioral modeling.

Continuous Assignments

A continuous assignment is the most basic statement in data-flow modeling, used to drive a value onto the net. A continuous assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction. A continuous assignment statement starts with the keyword assign. The syntax of an assign statement is as follows:

// Syntax of assign statement in the simplest form

assign some_wire_variable = any_expression;
Continuous assignments have the following characteristics:

1. The left hand side of an assignment must always be a scalar or a vector net or a concatenation of scalar and vector nets. It cannot be a scalar or a vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-hand side operands changes and the value is assigned to the left-hand side net.

3. The operands on the right hand side can be registers or nets or function calls. Registers or nets can be scalar or vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time when a net is assigned the evaluated value. This feature is similar to specifying values for gates. It is very useful in modeling timing behavior in real circuits.

Examples of continuous assignment are shown below. At this point, concentrate on how the assign statements are specified:

// Continuous assign. out is a net. i1 and i2 are nets

assign out = i1 & i2;

// Continuous assign for vector nets. Addr is a 16-bit vector net.

// addr1 & addr2 are 16-bit vector registers.

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0];

// Concatenation. Left hand side is a concatenation of a scalar

// net and a vector net.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

We now discuss a shorthand method of placing a continuous assignment on a net.

Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration assignment per net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a regular-continuous assignment.

// regular continuous assignment

wire out;

assign out = in1 & in2;

//Same effect is achieved by an implicit continuos assignment

wire out = in1 & in2:

EXAMPLES
A design can be represented in terms of gates, data-flow or a behavioral description. In this section we consider the 4-to-1 multiplexer and a 4-bit full adder. Previously, these designs were directly translated from the logic diagram into a gate-level Verilog description. Here we describe the same designs in terms of data-flow.
4-to-1 Multiplexer
We show two methods to model the multiplexer by using data-flow statements.

Method1: Logic Equation
We can use assignment statements instead of gates to model the logic equation of the multiplexer. Notice that everything is same as the gate-level Verilog description except the computation of out is done by specifying one logic equation by using operators instead of individual gate instantiations. I./O ports remain the same. This is important so that the interface with the environment does not change. Notice how concise the description is compared to the gate-level description.

// Module 4-to-1 multiplexer using data flow. Logic equation

// Compare to gave-level model

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1. S0;

//Logic equations for out

assign out = (-s1 & -s0 & i0) |

 (-s1 & s0 & i1) |

 (s1 & -s0 & i2) |

 (s1 & s0 & i3);

endmodule

Method2: Conditional Operator

There is a more concise way to specify the 4-to-1 multiplexer.
// Module 4-to-1 multiplexer using data flow, Conditional operator

// Compare to gate-level model

module multiplexer4_to_1 (out i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

// Use nested conditional operator

assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0);

endmodule
In the simulation of the multiplexer, the gate-level module in lab#3 can be substituted with the dataflow multiplexer modules described above. The stimulus module will not change. The simulation results will be identical. By encapsulating functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the other modules in the stimulation. This is a very powerful feature of Verilog.

4-Bit Full Adder
A concise description of the adder is defined with the + and { } operators.

// Define a 4-bit full adder by using dataflow statements.

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input [3:0] a, b;

input c_in;

// Specify the function of a full adder

assign {c_out, sum} = a + b + c_in;

endmodule

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not change. The simulation results will be identical.

EXERCISE

[image: image1.png]

A synchronous counter can be designed by using master-slave JK flip-flops. Design a 4-bit synchronous counter. Circuit diagrams for the synchronous counter and the JK flip-flop are given below. Clear signal is active low. Data gets latched on the positive edge of clock, and the output of the flip-flop appears on the negative edge of clock. Counting is disabled when count_enable signal is low. Write the dataflow description for the synchronous counter. Write a stimulus file that exercises clear and count_enable. Display the output count Q[3:0].

Master-Slave JK-flipflop

[image: image2.png]Q[3)

Qlo} Qp) Q2]
| | | }
CR @ CR a CR a CR a
r J A K J K r J A K I'—' J A K
clear ‘ .
clocx D
H hY q J
count /

enaple

4-bit Synchronous Counter with clear and count enable

VLSI Design – VLSI

1

