Behavioral Modeling I

Lab # 5

LAB #5

BEHAVIORAL MODELING I
OBJECTIVE

To study behavioral modeling techniques in Verilog.

THEORY
With the increasing complexity of digital design, it has become vitally important to make wise design decisions early in a project. Designers need to be able to evaluate the tradeoffs of various architectures and algorithms before they decide on the optimum architecture and algorithm to implement in hardware. Thus, the architectural evaluation takes place at an algorithmic level where the designers do not necessarily think in terms of logic gates or data flow but in terms of that the behavior of the algorithm and its performance. Only after the high-level architecture and algorithm are finalized, do designers start focusing on building the digital circuit to implement the algorithm.

Verilog provides designers the ability to describe design functionality in an algorithmic manner. In other words, the designers describe the behavior of the circuit. Thus, behavioral modeling represents the circuit at a very high level of abstraction. Design at this level resembles C programming more than it resembles digital circuits design. Behavioral Verilog constructs are similar to C language constructs in many ways. Verilog is rich in behavioral constructs that provide the designer with a great amount of flexibility.
Structured Procedures
There are two structured procedure statements in Verilog: always and initial. These statements are the two most basic statements in behavioral modeling. All other behavioral statements can appear only inside these structured procedure statements.

Verilog is a concurrent programming language unlike the C programming language, which is sequential in nature. Activity flows in Verilog run in parallel rather than in sequence. Each always and initial statements represents a separate activity flow in Verilog. Each activity flow starts at simulation time 0. The statements always and initial cannot be nested. The fundamental difference between the two statements is explained below.

The initial Statement
All statements inside an initial statement constitute an initial block. An initial block starts at time 0, executes exactly once during a simulation, and then does not execute again. If there are multiple initial blocks, each block starts to execute concurrently at time 0. Each block finishes execution independently of other blocks. Multiple behavioral statements must be grouped, typically using the keywords begin and end. If there is only one behavioral statement, grouping is not necessary. This is similar to the begin-end blocks in Pascal programming language or the { } grouping in the C programming language.
The initial blocks are typically used for initialization, monitoring, waveforms and other process that must be executed only once during the entire simulation run.

The always Statement
All behavioral statements inside an always statement constitute an always block. The always statement starts at time 0 and executes the statements in the always block continuously in a looping fashion. This statement is used to model a block of activity that is repeated continuously in a digital circuit. An example is a clock generator module that toggles the clock signal every half cycle. In real circuits, the clock generator is active from time 0 to as long as the circuit is powered on.

Procedural Assignments

Procedural assignments update the values of reg, integer, real, or time variables. The value placed on a variable will remain unchanged until another procedural assignment updates the variable with a different value.

There are two types of procedural assignment statements: blocking and nonblocking.

Blocking assignments

Blocking assignment statements are executed in the order they are specified in a sequential block. The operator = is used to specify blocking assignments.

Nonblocking Assignments

Nonblocking assignments allow scheduling of assignments without blocking execution of the statements that follow in a sequential block. A <= operator is used to specify nonblocking assignments.

Timing Controls

Various behavioral timing control constructs are available in Verilog. Timing controls provide a way to specifiy the simulation time at which procedural statements will execute. We will look at event-based timing control.

Event-Based Timing Control
An event is the change in the value on a register or a net. Events can be utilized to trigger execution of a statement or a block of statements.

Regular Event Control

The @ symbol is used to specify an event control. Statements can be executed on changes in signal value or at a positive or negative transition of the signal value.

Event OR Control

Sometimes a transition on any one of multiple signals or events can trigger the execution of a statement or a block of statements. This is expressed as an OR of events or signals. The list of events or signals expressed as an OR is also known as a sensitivity list.

Conditional Statements and Multi way Branching

Conditional statements are used for making decisions based upon certain conditions. These conditions are used to decide whether or not a statement should be executed. Keywords if and else are used for conditional statements.

The nested if-else-if can become unwieldy if there are too many alternatives. A shortcut to achieve the same result is to use the case statement.

EXAMPLE

4-to-1 Multiplexer

We now define the 4-to-1 multiplexer with the behavioral case statement. The behavioral multiplexer can be substituted for the dataflow multiplexer designed in the previous lab; the simulation results will be identical.

// 4-to-1 multiplexer. Port list is taken exactly from the I/O diagram.

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s0, s1;

// output declared as a register

reg out;

// recompute the signal out if any input signal changes.

// All input signals that cause a recomputation of out to occur must go into

// the always @(…) sensitivity list.

always@(s0 or s1 or i0 or i1 or i2 or i3)

begin

 case ({s1, s0})

 2’b00: out = i0;

 2’b01: out = i1;

 2’b10: out = i2;
 2’b11: out = i3;
 default: out = 1’bx;

 endcase

end

endmodule

EXERCISES

1. Design a clock with time period = 40 and a duty cycle of 25% by using the always and initial statements. The value of clock at time = 0 should be initialized to 0.

2. Using a case statement, design an 8-function ALU that takes 4-bit inputs a and b and a 3-bit input signal select, and gives a 5-bit output out. The ALU implements the following functions based on a 3-bit input signal select. Ignore any overflow or underflow bits.

	Select Signal
	Function

	3’b000
	out = a

	3’b001
	out = a + b

	3’b010
	out = a – b

	3’b011
	out = a / b

	3’b100
	out = a % b (remainder)

	3’b101
	out = a << 1

	3’b110
	out = a >> 1

	3’b111
	out = (a>b) (magnitude compare)

VLSI Design – VLSID

4

