Modeling Synchronous Circuits I

Lab # 9

Lab #9

MODELING SYNCHRONOUS LOGIC CIRCUITS I
OBJECTIVE
To study techniques of synthesizing synchronous logic circuits.

THEORY
This lab describes the models of circuit functions that are implemented using synchronous logic. The two basic types of synchronous element (cell primitives) in an ASIC or FPGA library that are

1- found in an ASIC or FPGA library of cells,

2- mapped to by synthesis tools

are:

· the D-type flow-through latch, and

· the D-type flip flop

About a third of ASIC vendor libraries contain JK and toggle type flip-flops but they are not generally mapped to by commercial RTL synthesis tools. This lab covers modeling of latches. Flip-flops and counters will be discussed in the next lab.

Modeling Latch Circuits

[image: image1.png]A latch is a level sensitive memory cell that is transparent to signals passing from the D input to Q output when enabled, & holds the value of D on Q at the time when it becomes disabled; see figure 9.1

Fig 9.1: The level sensitive D-type flow through latch
There are typically many latch variants in an ASIC or FPGA technology library. They may have active high or low enable signals, and optional active high or low preset and clear signals.

How latches are inferred

A latch is synthesized from an HDL model when a signal needs to hold its value over time. In Verilog, if and case statements can be used. As s general rule, it is better not to use a case statement to infer latches as there is no way of explicitly specifying the enable signal; Example 9.4 shows what happens if you do. If it is desirable to use a case statement, it should be modeled within an if statement, as this allows the enable signal to be specified explicitly.

We have seen that how combinational logic is inferred when a signal is defined in all possible branches of a conditional expression, that is, if, case, etc. Conversely, if one or more branches of a conditional expression does not define a value for a particular output signal, and no default output value is defined before the conditional statement, then a latch is automatically inferred. A latch is inferred if a path through the code exists such that a particular signal is not updated (assigned) a new value.

Unintentional latch interference from case statements

In Verilog, a branch for case choice value is not needed for Verilog LRM compliance and so the default clause is always optional. However, if the default clause is omitted a latch will always be inferred, even if the case statement already has an output signal explicitly assigned in what is thought to be all branches covering all case choice values. The reason for this is that although all case conditions may be thought of as being covered, every possible combination of the 4 value, value set {X, 0,1,Z}, is almost always not covered for all case choice values.

Four latches related examples follow.

Example 9.1: Modeling latches with preset and clear inputs

Latches with preset and clear input signals are modeled. Preset and clear inputs to a latch are always asynchronous with the enable.

module LATCH_ASYNC_P_C

(En1, Clear, A1, En2, Clear2, A2, En3, Preset3, A3, En4, Preset4, A4, En5,Preset5, Clear5, A5, Y1, Y2, Y3, Y4, Y5);

input En1, Clear1, A1, En2, Clear2, A2, En3, Preset3, A3, En4, Preset4, A4, En5, Preset5, Clear5, A5;

output Y1, Y2, Y3, Y4, Y5;

reg
Y1, Y2, Y3, Y4, Y5;

always @ (En1 or Clear1 or A1 or

 En2 or Clear2 or A2 or

 En3 or Clear3 or A3 or

 En4 or Clear4 or A4 or

 En5 or Clear5 or Preset5 or A5)

begin

 if (!Clear1)
//latch with active low clear

Y1=0;

 else if (En1)

Y1=A1;

 if (!Clear2)

//latch with active low clear

Y2=0;

 else if (En2)

Y2=A2

 if (!Preset3)

//latch with active low preset

Y3=0;

 else if (En3)

Y3=A3

 if (Preset4)

//latch with active high preset

Y4=0;

 else if (En4)

Y4=A4

 if (Clear5)

//latch with active high preset & clear

Y5=0;

 else if (Preset5)

Y5=1;

 else if (En5)

Y5=A5;

end

endmodule

[image: image2.png]The synthesized circuit is shown below.

Example 9.2 Simple and multiple latch inference using if statements

First if statement: Signal Y1 has no else clause and shows the model of a latch in its most simplest from.

Second if statement: Contains two assignments to two single bit signals. Signal M2 is assigned a value in the first assignment statement and is used in the second. Now, because the assignment is non-blocking (<=) in the Verilog model, two separate latches are inferred with combinational logic between them as shown.

Third if statement: Identical to second if statement except the non-blocking signal assignment is now a blocking signal assignment (=) in the Verilog model. The synthesized circuit consists of just one latch as shown by the synthesized circuit. Only one latch is inferred because Verilog blocking procedural assignment for Y3 uses the new value of M3 computed in the assignment of M3 immediately before the assignment of Y3.

Module LATCH_IF

 (En1, En2, En3, A1, A2, B2, C2, A3, B3, C3, Y1, Y2, Y3);

 input

En1, En2, En3, A1, A2, B2, C2, A3, B3, C3,

 output
Y1, Y2, Y3;

 reg M, Y1, Y2, Y3;

 reg M2, M3;

always @(En1 or En2 or En3 or A1 or A2 or B2 or C2 or A3 or B3 or C3)

begin: A1

 if (En1)

 Y1=A1;

 if (En2)

 begin

//two latches

 M2 <=! (A2 & B2);
// non blocking signal assignment

 Y2 <=! (M2 | C2);

end

 if(En3)

 begin

//one latch

M3 =! (A3 & B3);
// Blocking signal assignment

Y3 =! (M3 | C3);

 end

end

endmodule

[image: image3.png]
The synthesized circuit is shown above.

Example 9.3: Multiple gated enable latch
Provided an if statement is not in an edge triggered section of code, it does not matter how many else if clauses there are. If there is no else clause and there is no default output assignment before the if clause, latches will always be inferred.

module Latch_IF_ELSEIF (En 1, En2, En3, A1, A2, A3,Y);

input En1, En2, En3, A1, A2, A3;

output Y;

reg Y;

always @ (En1 or En2 or En3 or A1 or A2 or A3)

 if (En1 == 1)

Y = A1;

 else if (En2 == 1)

Y = A2;

 else if (En3 == 1)

Y= A3;

[image: image4.png]endmodule

Example 9.4: Inadvertent latch inference from a case statement
This model shows a bad way of inferring a latch whether deliberate or not. The case statement is of the 16 valued input A. The output Y, is defined for all the choice values, however, because the output is not defined in the default clause, a latched output is inferred.

Output Y will have a value of 3 because case choice values 7 & 12 are also included in the case branch that assigns Y to 2.

module LATCH_CASE (A, Y);

 input [3:0] A;

 output [2:0] Y;

 reg [2:0] Y;

 always @ (A)

begin

 case (A)

0, 1,2, 3,10:

Y=1;

4,5,6,7,8,9,11,12,13,14:
Y=2;

7,12:

Y=3;

15:

Y=4;

default:; // default branch does nothing . Y not assigned

endcase

end

endmodule

The synthesized circuit is shown below.

[image: image5.png]
VLSI Design – VLSID

1

