Final Year Project Report

DES ON CHIP

(Data Encryption Standard)

B.S. Computer Engineering, Batch 1998
INTERNAL ADVISOR

EXTERNAL ADVISOR

Kashif Shaikh

Javed Nadeem

Lecturer

Executive Engineer
SSUET

SIEMENS, Pakistan

PREPARED BY
SYED TARIQ SARFARAZ
98-CE-166

OWAIS MASOOD
98-CE-185

KHALID KHAN
98-CE-214

KAMRAN QAZI
98-CE-332

[image: image1.wmf]5

Definitions

Department Of Computer Engineering

Sir Syed University of Engineering & Technology

University Road, Karachi-75300

Detailed Table Of Contents

CHAPTER 1 Theoretical Background …………………………………………. 2 - 35
Encryption …..…………….. 3

The DES system ………….. 14

CHAPTER 2 Overall System Explanation …………………………………….. 36 - 40

From Algorithm To Chip Design Flow Diagram …………… 37

Compiler Report by MAX+PLUS II. ………………………….. 40

CHAPTER 3 Description Of Components ……………………………………… 41 - 46
Key Module ……………. 43

Data Module ………….. 43
CHAPTER 4 Selection Of Tools For Developing Project. ……………………… 47-57

WHAT IS VERILOG? ……………………………………………. 49

What Is MAX+PLUS II Logic Design ? ……………………… 54

CHAPTER 5 Overall Operation Of The System. ……………………………… 58 - 70
Functional Description ……………………………………….. 59

The Operation Of The DES system …………………………...60
Features …………………………………………………………70

Applications …………………………………………………….70

Design Tool Requirements ………………………………….. 70

CHAPTER 6 Possible System enhancement/Upgrading ………………………… 71 - 72
Chip Fabrication …………………. 72

Decryption Upgrade ……………… 72

Appendices …………………………………………………………………………. 73 - 79

Block diagram of System ………………………………………. 74

Workload Distribution among Members ……………………. 77

Cost & Time Analysis ………………………………………… 79

List Of References …………………………………………….. 80

Coding ………………………………………………………….. 81 - 119

Chapter 1

THEORETICAL BACKGROUND

Encryption and Cryptography

A message in its original form (plaintext) is encrypted into an unintelligible form (cipher text) by a set of procedures known as an encryption algorithm and a variable, called a key; and the cipher text is transformed (decrypted) back into plaintext using the encryption algorithm and a key.

Definition

· Encryption normally works in the following way:

· A message in its original form (plaintext) is encrypted into an unintelligible form (cipher text) by a set of procedures known as an encryption algorithm and a variable, called a key; and the cipher text is transformed (decrypted) back into plaintext using the encryption algorithm and a key.

[image: image30.png]
Why Cryptography?

· Concerned with developing algorithms which may be used to:

· Conceal the context of some message from all except the sender and recipient (privacy or secrecy), and/or

· Verify the correctness of a message to the recipient (authentication)

· Form the basis of many technological solutions to computer and communications security problems

Definitions

· In cryptographic terminology, the message is called plaintext or clear text.

· Encoding the contents of the message in such a way that hides its contents from outsiders is called encryption.

· A method of encryption and decryption is called a cipher - The name cipher originates from the Hebrew word "Saphar," meaning "to number.”

· The encrypted message is called the cipher text.

· The process of retrieving the plaintext from the cipher text is called decryption.

· Encryption and decryption usually make use of a key, and the coding method is such that only knowing the proper key can perform decryption.

The Key

· All modern algorithms use a key to control encryption and decryption; a message can be decrypted only if the key matches the encryption key. The key used for decryption can be different from the encryption key, but for most algorithms they are the same.

Encryption Algorithm Types

· There are two classes of key-based algorithms:

· Symmetric (or secret-key)

· Asymmetric (or public-key) algorithms
· The difference is that symmetric algorithms use the same key for encryption and decryption (or the decryption key is easily derived from the encryption key), whereas asymmetric algorithms use a different key for encryption and decryption, and the decryption key cannot be derived from the encryption key.

Symmetric Algorithms

· Symmetric algorithms can be divided into stream ciphers and block ciphers.

· Stream ciphers can encrypt a single bit of plaintext at a time, whereas

· Block ciphers take a number of bits (typically 64 bits in modern ciphers), and encrypt them as a single unit.

Asymmetric Algorithms

· Asymmetric ciphers (also called public-key algorithms or generally public-key cryptography) permit the encryption key to be public (it can even be published in a newspaper), allowing anyone to encrypt with the key, whereas only the proper recipient (who knows the decryption key) can decrypt the message. The encryption key is also called the public key and the decryption key the private key or secret key.

[image: image2.wmf]18

Comparison of SE and AE

Symmetric Algorithms are Faster

· Generally, symmetric algorithms are much faster to execute on a computer than asymmetric ones. In practice they are often used together, so that a public-key algorithm is used to encrypt a randomly generated encryption key.

Classical Cryptographic Techniques

· We have two basic components of classical ciphers: substitution and transposition

· Substitution: In substitution ciphers letters are replaced by other letters

· Transposition: In transposition ciphers the letters are arranged in a different order.

[image: image3.wmf]43

Substitution and

Transposition

Types of Encryption Systems

· There are two types of encryption algorithms:

· Symmetric or Private Key systems

· Asymmetric or Public Key systems

Symmetric or Private Key Systems

· A Private-Key (or secret-key, or single-key) encryption algorithm is one where the sender and the recipient share a common, or closely related, key

· "Symmetric" means it uses the same key for encryption as for decryption. As with all symmetric ciphers, the sender must transmit the key to the recipient via some secure and tamperproof channel, otherwise the recipient won't be able to decrypt the cipher text.

· All traditional encryption algorithms are private-key

Cryptography Meets Computers

· The invention of computers in the 20th century revolutionized cryptology.

· IBM Corporation created a code, Data Encryption Standard (DES), that has not been broken to this day.

· Thousands of complex codes and ciphers have been programmed into computers so that computers can algorithmically unscramble secret messages and encrypted files.

Example Symmetric Encryption Algorithm - DES

· The most well known symmetric system is the Data Encryption Standard (DES).

· Data Encrypt Standard (DES) is a private key system adopted by the U.S. government as a standard “very secure” method of encryption.

[image: image4.wmf]67

Private Key Encryption

[image: image5.wmf]75

Figure Comparison of SK and

PK Cryptography

[image: image6.wmf]76

Comparison of SK and PK

Cryptography

DISTINCT

FEATURES

SECRET KEY

PUBLIC KEY

NUMBER OF

KEYS

Single key.

Pair of keys.

TYPES OF

KEYS

Key is secret.

One key is

private, and

one key is

public.

LENGTH OF

KEYS

40-200 bits

512-2048 bits

RELATIVE

SPEEDS

Faster.

Slower.

Uses of Encryption

· Protecting data from prying eyes is not the only security issue in networking. One can imagine at least four security services:

· Protecting data from being read by unauthorized persons

· Verifying the sender of each message (authentication)

· Preventing unauthorized persons from inserting or deleting messages

· Making it possible for users to send signed documents electronically

· Encryption can be used to achieve all these goals.

Uses of Encryption

· Encryption may be used for:

· Confidentiality

· User Authentication

· Message Authentication

· Proof of Origin

Confidentiality - Secrecy

· Confidentiality - encrypted data cannot normally be understood by anyone other than the sender or the receiver error detection - checking that the contents Of a message have not accidentally changed.

User Authentication

· User authentication - verification by the receiver that the sender is the genuine article and not somebody else.

Message Authentication

· Message authentication-verification that messages have not been lost or tampered with.

Proof of Origin

· Proof or origin - proving to a third party that the message came from the stated sender

Location of Encryption in OSI Model

· The location of encryption in the OSI model has been so controversial that all mention of the subject was omitted from the initial standard.

· In theory, encryption can be done in any layer, but in practice three layers seem the most suitable: physical, transport, and presentation.

Encryption at the Physical Layer

· When encryption is done on the physical layer, an encryption unit is inserted between each computer and the physical medium.

· Every bit leaving the computer is encrypted and every bit entering a computer is decrypted. This scheme is called link encryption.

· It is simple , but relatively inflexible.

Encryption at the Transport Layer

· When encryption is done in the transport layer, the entire session is encrypted.

· A more sophisticated approach is to put it in the presentation layer, so that only those data structures or fields requiring encryption must suffer the overhead.

Strength of Cryptographic Algorithms

· It should be emphasized that the strength of a cryptographic system is usually equal to its weakest point. No aspect of the system design should be overlooked, from the choice algorithms to the key distribution and usage policies.

Crypto is Becoming Ubiquitous

· Crypto is not just for internet e-mail. You will find it in:

· – Cellular phones/Radio modems.

· – Cable/Sat TV broadcasts

· – Smart cards

· – DVD

· – Garage door openers

Data Encryption Standard - DES

DES was developed as a standard for communications and data protection by an IBM research team, in response to a public request for proposals by the NBS - the National Bureau of Standards (which is now known as NIST).

[image: image7.png]
Symmetric and Asymmetric Encryption Algorithms

[image: image8.png]
DES - History

· The Data Encryption Standard (DES) was developed in the 1970s by the National Bureau of Standards with the help of the National Security Agency.

· Its purpose is to provide a standard method for protecting sensitive commercial and unclassified data.

· IBM created the first draft of the algorithm, calling it LUCIFER.

· DES officially became a federal standard in November of 1976.

· In May 1973, and again in Aug 1974 the NBS (now NIST) called for possible encryption algorithms for use in unclassified government applications.

· Response was mostly disappointing, however, IBM submitted their Lucifer design

· Following a period of redesign and comment it became the Data Encryption Standard (DES)

DES - As a Federal Standard

· DES was adopted as a (US) federal standard in November 1976, published by NBS as a hardware only scheme in January 1977 and by ANSI for both hardware and software standards in ANSI X3.92-1981 (also X3.106-1983 modes of use)

· Subsequently DES has been widely adopted and is now published in many standards around the world ‘

DES - Usage in Industry

· One of the largest users of the DES is the banking industry, particularly with EFT, and EFTPOS

· It is for this use that the DES has primarily been standardized, with ANSI having twice reconfirmed its recommended use for 5 year periods - a further extension is not expected however

DES - Design Shrouded in Mystery

· Although the standard is public, the design criteria used are classified and have yet to be released.

· There has been considerable controversy over the design, particularly in the choice of a 56-bit key.

· W. Diffie, M Hellman "Exhaustive Cryptanalysis of the NBS Data Encryption Standard" IEEE Computer 10(6), June 1977, pp74-84

· M. Hellman "DES will be totally insecure within ten years" IEEE Spectrum 16(7), Jul 1979, pp 31-41

DES - Design Proves Good

· Recent analysis has shown despite this that the choice was appropriate, and that DES is well designed.

· Rapid advances in computing speed though have rendered the 56 bit key susceptible to exhaustive key search, as predicted by Diffie & Hellman.

· The DES has also been theoretically broken using a method called Differential Cryptanalysis, however in practice this is unlikely to be a problem (yet).

DES - Basics

· DES uses the two basic techniques of cryptography - confusion and diffusion.

· At the simplest level, diffusion is achieved through numerous permutations and confusions is achieved through the XOR operation.

The S-P Network

[image: image9.png][image: image10.png]
[image: image11.png]
DES in a nutshell
[image: image12.png]
DES - The 16 Rounds

· The basic process in enciphering a 64-bit data block and a 56-bit key using the DES consists of:

· An initial permutation (IP)

· 16 rounds of a complex key dependent calculation f

· A final permutation, being the inverse of IP

[image: image13.png]
The Key Dependent Calculation

[image: image14.png]
The 16 Rounds of F Consist Of:

[image: image15.png]
DES - Swapping of Left and Right Halves

· The 64-bit block being enciphered is broken into two halves.

· The right half goes through one DES round, and the result becomes the new left half.

· The old left half becomes the new right half, and will go through one round in the next round.

· This goes on for 16 rounds, but after the last round the left and right halves are not swapped, so that the result of the 16th round becomes the final right half, and the result of the 15th round (which became the left half of the 16th round) is the final left half

· This can be described functionally as

L(i) = R(i-1)

R(i) = L(i-1) (P(S(E(R(i-1)) (K(i)))

· [image: image16.png] This forms one round in an S-P network

DES - Basics

· Fundamentally DES performs only two operations on its input, bit shifting (permutation), and bit substitution.

· The key controls exactly how this process works.

· By doing these operations repeatedly and in a non-linear manner you end up with a result which can not be used to retrieve the original without the key.

· Those familiar with chaos theory should see a great deal of similarity to what DES does. By applying relatively simple operations repeatedly a system can achieve a state of near total randomness.

Each Iteration Uses a Different Sub-key

· DES works on 64 bits of data at a time. Each 64 bits of data is iterated on from 1 to 16 times (16 is the DES standard).

· For each iteration a 48 bit subset of the 56 bit key is fed into the encryption block

· Decryption is the inverse of the encryption process.

DES Key Processing

· The key is usually stored as a 64-bit number, where every eighth bit is a parity bit.

· The parity bits are pitched during the algorithm, and the 56-bit key is used to create 16 different 48-bit subkeys - one for each round.

DES Key Processing - Subkeys Generation

· In order to generate 16 48-bit subkeys from the 56-bit key, the following process is used.

· First, the key is loaded according to the PC-1 and then halved.

· Then each half is rotated by 2 bits in every round except the first, second, 9th and last rounds.

· The reason for this is that it makes it secure against related-key cryptanalysis.

· Then 48 of the 56 bits are chosen according to a compression permutation.

The Key Schedule

· The subkeys used by the 16 rounds are formed by the key schedule which consists of:

· An initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves

· 16 stages consisting of

· selecting 24-bits from each half and permuting them by PC2 for use in function f,

· rotating each half either 1 or 2 places depending on the key rotation schedule KS

· this can be described functionally as:

K(i) = PC2(KS(PC1(K),i))

Permuted Choice 1 -- PC-1

[image: image17.png]
Permuted Choice 2 -- PC-2

[image: image18.png]
Key Rotation Schedule

· The key rotation schedule KS is specified as:

 Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 KS 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

 Total Rot 1 2 4 6 8 10 12 14 15 17 19 21 23 25 27 28
[image: image19.png]
DES Operation

· The block to be encrypted is halved - the right half goes through several steps before being XOR-ed with the left half and, except after the last round, trading places with the left half.

DES - Expansion Permutation

· First the right half goes through an expansion permutation which expands it from 32 to 48 bits.

· This makes it the same length as the subkey to allow the XOR, but it also demonstrates an important concept in cryptography. In expanding to 1.5 times its size, several bits are repeated (no new bits are introduced - all the existing bits are shifted around, and some are used twice).

· Because of this some of the input bits affect two output bits instead of one, the goal being to have every output bit in DES depend upon every input bit as quickly as possible. This is known as the avalanche effect.

[image: image20.png]Expansion Permutation Table
DES Operation

· The result of the expansion permutation is XOR-ed with the subkey, and then goes through the S-boxes.

· There are 8 S-boxes, each of which takes a 6-bit input an spits out a 4-bit output.

· This step is non-linear. For a given input i1, i2 ... i6, the output is determined by using the concatenation of i1 and i6, and the concatenation of i2..i6, and using these as the indices to the table which is the S-box.

S-box Permutations

· The S-boxes are somewhat different from the other permutations. While all the others are set up according to "bit x goes to bit y", the input bits can be viewed differently for the S-boxes.

· If the input is {d1,d2,d3,d4,d5,d6} then the two-bit number {d1,d6} and the the four-bit number {d2,d3,d4,d5} are used as indices to the table.

· For the 48-bit word {d1,d2..d48}, the word {d1..d6} is sent to S-box 1, the word {d7,,d12} to S-box 2, etc. The output of S-box 1, {o1..o4}, that of S-box 2, {o5..o8} etc. are concatenated to form the output.

S-box Permutations

[image: image21.png]
[image: image22.png]
DES Operation - P Box

· The output of each of the 8 S-boxes is concatenated to form a 32-bit number, which is then permutated with a P-box. This P-box is a straight permutation, and the resulting number is XOR-ed with the left half of the input block with which we started at the beginning of this round. Finally, if this is not the last round, we swap the left and right halves and start again.

P Box

[image: image23.png]
DES Permutations

· The initial and final permutations in DES serve no cryptographic function. They were originally added in order to make it easier to load the 64-bit blocks into hardware - this algorithm after all predates 16-bit busses - and is now often omitted from implementations.

· However the permutations are a part of the standard, and therefore any implementation not using the permutations is not truly DES.

DES Permutations

· Using the permutation a DES chip loads a 64-bit block one bit at a time (this gets to be very slow in software).

· The order in which it loads the bits is shown below.

· The final permutation is the inverse of the initial (for example, in the final permutation bit 40 goes to bit 1, whereas in the initial permutation bit 1 goes to bit 40).

· bit
goes to bit
bit
goes to bit

· 58
1
57
33

· 50
2
49
34

· 42
3
41
35

· 34
4
33
36

· 26
5
25
37

· 18
6
17
38

· 10
7
9
39

· 2
8
1
40

· 60
9
59
41

· 52
10
51
42

· 44
11
43
43

· 36
12
35
44

· 28
13
27
45

· 20
14
19
46

· 12
15
11
47

· 4
16
3
48

· 62
17
61
49

· 54
18
53
50

· 46
19
45
51

· 38
20
37
52

· 30
21
29
53

· 22
22
21
54

· 14
23
13
55

· 6
24
5
56

· 64
25
63
57

· 56
26
55
58

· 48
27
47
59

· 40
28
39
60

· 32
29
31
61

· 24
30
23
62

· 16
31
15
63

· 8
32
7
64

DES Initial and Final Permutations

[image: image24.png]
Weak Keys

· There are a few keys which are considered weak for the DES algorithm. They are so few, however, that it is trivial to check for them during key generation.

[image: image25.png]
DES Modes of Use

· DES encrypts 64-bit blocks of data, using a 56-bit key

· We need some way of specifying how to use it in practice, given that we usually have an arbitrary amount of information to encrypt

· The way we use a block cipher is called its Mode of Use and four have been defined for the DES by ANSI in the standard: ANSI X3.106-1983 Modes of Use)

· Modes are either:

· Block Modes

· Splits messages in blocks (ECB, CBC)

· Stream Modes

· On bit stream messages (CFB, OFB)

Chapter 2

OVERALL SYSTEM EXPLAINATION

DES

From Algorithm To Chip

[image: image26.png]

Veriloger

[image: image27.png][image: image28.png]
[image: image29.png]

 Max + II Plus

 FPGA

 Chip

OVERALL SYSTEM EXPLAINATION

Performs complete encryption based on DES standard.

 The DES on Chip is an implementation of the DES encryption algorithm, suitable for a variety of applications. The DES on Chip provides a scalable hardware implementation of the Data Encryption Standard (DES). DES is a block-oriented encryption algorithm. Plaintext data is loaded 64-bits at a time along with the encryption key.

 The same hardware can be used to decrypt a block of data. With decryption selected, a block of cipher text is loaded along with the encryption key and later the plain-text is available(Upgradeable).

DES on Chip is a general implementation of DES design for any kind of chip. Such as FPGA,CPLDs and other kinds of logic devices. This system has been designed using the following Procedures and Tools :

· Algorithm is implemented into program using Verilog code.The Verilogger(compiler), was selected as it is the best possible way to test and implement a hardware based design.

· Although the verilog is very near to the hardware, but it gives very ideal results, which are not possible to implement in the real hardware.

· To bring the system closer to the actual hardware design MAX+ PLUS II, has been used.

· MAX+ PLUS II has the unique capability to simulate the system with the real hardware flaws and limitations.It also gives a "COMPILER REPORT FILE" which has all the technical details & summary, such as the actual pins of the chip, number of gates, the time delays, gate delays,resource usage and the PINOUT-DIAGRAM of the Chip.

Pin-out Diagram of DES Chip Generated by MAX+PLUS II

 --

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |

|AF o AF|

|AE o AE|

|AD o AD|

|AC o o o o o o o o o o AC|

|AB o o o o o o o o o o AB|

|AA o o o o o o o o o o AA|

|Y o o o o o o o o o o Y|

|W o o o o o o o o o o W|

|V o o o o o o o o o o V|

|U o o o o o o o o o o U|

|T o o o o o o o o o o T|

|R o o o o o o o o o o R|

|P o o o o o o o o o o P|

|N o o o o o o o o o o N|

|M o o o o o o o o o o M|

|L o o o o o o o o o o L|

|K o o o o o o o o o o K|

|J o o o o o o o o o o J|

|H o o o o o o o o o o H|

|G o o o o o o o o o o G|

|F o o o o o o o o o o F|

|E o o o o o o o o o o E|

|D o o o o o o o o o o D|

|C o C|

|B o B|

|A o A|

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |

 --

EPF10K30ABC356-1

Bottom View
Chapter 3

DESCRIPTION OF COMPONENTS OF THE SYSTEM

DISCRIPTION OF COMPONENTS

Architecture of components:

The architecture of DES contains very complex operations, procedures, loops, extensive use of modules and functions, which are implemented in an integrated, hardware friendly environment. The main object was to implement the DES in such a way, which are closes to actual hardware design logic .For the accomplishment of this goal and to work the program in an efficient manner we have perform all the operations such as XOR, SHIFTING, PERMUTING and SAVING OF KEYS IN MEMORY (RAM) that are efficiently simulated by Veriloger into actual hardware logic.

Key [64]

 cipher [64]
Data [64]

 dready

Loadk

 kready

Loadd

The DES system of encryption and decryption deals with the given input key and the input data and provided the encrypted/decrypted result (cipher/decipher).As a result our system contains two inputs , keys and data .

KEY MODULE

First our system takes the 64-bit key input. The key is then passed through the first permutation table (PC-1), 8 bits are discarded asparity bits, and the 56-bit key is stored in two halves in two registers(C and D 28 bits each). Both the halves are left shifted 1 or 2 times according to the shifting schedule. Both the halves (C and D) are then concatenated and passes through another permutation table (PC-2). The result of PC-2 is the final 48 -bit keys.

The process form the shifting to PC-2 is repeated 16 times and at the end we get 16 sub keys, which are stored in memory (RAM) designed specially to store the sub keys.

DATA MODULE

The data is input in 64-bits if less than 64-bits, it is padded. The 64-bits are stored in two 32-bits registers each (left and right). The bits in right register then pass through an expansion permutation box.

In this permutation the 32 bits are expanded into 48 bits according to the bit selection function of the expansion permutation. The 48 bits which come as a result of expansion are then XORED with the key which is also 48 bits long , this key is the first sub key which is stored in the memory. The result of this operation is a value, which is also 48 bits long. This 48 bits value is broken down into 8 blocks each of which is 6 bits long.

These 8 blocks are passed to the S-boxes, which is one of the important features of DES design.

In general it is very easy to implement S-box in the design but in Verilog it is a difficult task to accomplish therefore we have implement it by following a special approach.

The S-boxes are implemented in two pieces, a multiplexer and the actual S-box. Each row of actual S-box is implemented as one S-box. The two bits (first and last i.e 1st and 6th bit) of each block goes to multiplexer which selects the S-box (actually the row of S-box).All the eight 6-bits blocks are processed in the same manner.

In S-box for each input there is a corresponding value, which is the result of the S-box, so for a 6-bit value, which is given as input to the S-box, a 4-bit value is produced. All the S-boxes, from S1 to S8 produce 4-bit value depending on the selection of multiplexer.

The result of all S-boxes is concatenated which are 32-bits long (4 bits from each box) and then passed through another permutation to make it more complex. The permuted 32-bits are then again XORED with the 32-bits of the left register. At the same time the left register is updated by the value in the right register and the result of XOR operation which is 32-bits is stored in the right register i.e update the contents of right register.

The process is repeated 16 times by applying all 16 sub keys that are stored in the memory.

In the end the overall result of all above process (the 16 rounds) is then concatenated and passed through another permutation, which is called the final permutation of the DES design standard, Thus giving a 64-bit final result which, is the ENCRYPTED value of the given PLAINTEXT.

This is the implementation of the DES design standard in VERILOG.

In Verilog the programming approach is object oriented so we have also followed this object oriented programming rules. We have divided our program into several modules. We have followed the top down approach. Our main module is mem_keygen_intrf () which calls four other modules mux2to1(), syn_ram_16*8_irou(), keygen() and encrypt() .

This module further calls other modules.

The keygen () module takes the key and generates 16 sub keys.

 The encrypt () module takes the data and load it into registers left and right. It then calls other modules expermute () for expansion permutation, eight modules for S-boxes, a module permute () for permutation after the S-boxes and another module fpermute () for final permutation.

In the top most modules we implement a multiplexer by module mux2ot1 ()

Because the key is either write in the memory or it is read from the memory

To used by the system.

The syn_ram_16*8_irou() module implements the ram where all the 16 sub keys are stored.

We have discussed above that we have implemented the S-boxes by a special technique, each row of S-box is implemented as a separate S-box such asd s1box () its row as s11 () and so on . a multiplexer mux4to1(),is used for every S-box to select row (i.e sub s-box) .

Chapter 4

SELECTION OF TOOLS FOR DEVELOPING PROJECT
 Verilog, MAX+II PLUS
SELECTION OF TOOLS FOR DEVELOPING PROJECT
Verilog, MAX+II PLUS
The selection of proper tools is essential for the development of any project whether it is Software-based or Hardware-related. But when dealing with hardware-based systems specifically, the need for selection of proper and compatible tools is compulsory.

The DES on Chip is an extensive system, to implement the DES algorithm the selection of a HDL (Hardware Description Language) was essential.

Available Choices:
The design requirement of our project allowed us to select one of the following Hardware Description Language for coding and Simulation.

· Verilog

· VHDL
Why We Chose VERILOG?

 Finally we implemented the DES algorithm using the VERILOG hardware description language. Following are the key reasons for selecting Verilog.

· Verilog is very easy to learn and use as compared to VHDL.

· Verilog is available for FREE Download from the Internet.

· Tools for Verilog are easily available widely on net without any financial burden.

· It is ideal for hardware implementations and is being widely used in industries.

· It is practically very easy to use as it has all the features of Object Oriented Programming.

· Verilog provides technology-independent simulation.

WHAT IS VERILOG?
Verilog HDL is a hardware description language used to design and document electronic systems. Verilog HDL allows designers to design at various levels of abstraction. It is the most widely used HDL with a user community of more than 50,000 active designers.

Verilog History

The Verilog Hardware Description Language, usually just called Verilog, was designed and first implemented by Phil Moorby at Gateway Design Automation in 1984 and 1985. It was first used beginning in 1985 and was extended substantially through 1987.

The implementation was the Verilog simulator sold by Gateway. The first major extension was Verilog-XL, which added a few features and implemented the infamous "XL algorithm" which was a very efficient method for doing gate-level simulation. This occurred in 1986, and marked the beginning of Verilog's growth period. Many leading-edge electronic designers began using Verilog at this time because it was fast at gate level simulation, and had the capabilities to model at higher levels of abstraction. These users began to do full system simulation of their designs, where the actual logic being designed was represented by a netlist and other parts of the system were modeled behaviorally.

In 1988, Synopsys delivered the first logic synthesizer, which used Verilog as an input language. This was a major event, as now the top-down design methodology could actually be used effectively. The design could be done at the "register transfer level", and then Synopsys' Design Compiler could translate that into gates. With this event, the use of Verilog increased dramatically.

Design Flow

]

Design Specification

Scope of Verilog

· Digital system design is prevailing as the field of choice for many as it is well oriented for the future, and is growing very fast, with a lot of opportunities

· Knowledge of HDLs is a standard prerequisite for jobs in any field related to architecture and design of Digital systems and chips, including Computer architecture

· HDL programmers alone get paid very High salaries
Towards MAX+PLUS II

As VERILOG gives the technology independent results that are generally simulated and are calculated just to verify our logic. It does not contain any practical implementation details. It leads to the conclusion that it is necessary to simulate and verify the design using such a tool, which simulates the 'real' hardware design, with the ability to accept the final code, which in turn could be easily dumped on the chip.

 For this purpose we have used MAX+II PLUS

Why We Chose MAX+II PLUS:

· MAX+II PLUS provides the facility to accept Verilogger code directly.

· It can simulate the result with the exact details of the actual hardware chip.

· It also gives a "COMPILER REPORT FILE" which has all the technical details & summary, such as the actual pins of the chip, number of gates, the time delays,etc.

· MAX+II PLUS gives the PINOUT-DIAGRAM of the actual chip which is to be fabricated.

What Is MAX+PLUS II Logic Design ?

The Altera Multiple Array MatriX Programable Logic User system (MAX+PLUS II) provides a multi-platform, architecture-independent design environment that easily adapts to your specific design needs. MAX+PLUS II offers easy design entry, quick processing, and straightforward device programming.

MAX+PLUS II Development software is a fully integrated package for creating logic designs for Altera programming logic devices, including the classic, MAX 5000, MAX7000, MAX 9000, FLEX 6000, FLEX 8000, and FLEX 10k families of devices.

MAX+PLUS II offers a full spectrum of logic design capabilities, a variety of

design entry methods for hierarchical designs, powerful logic synthesis, timing-driven compilation, partitioning, functional and timing simulation, linked multi-device simulation, timing analysis, automatic error location, and device programming and verification.

MAX+PLUS II both reads and writes Altera Hardware Description Language(AHDL) files, Verilog HDL files,VHDL files and OrCAD schematic files.In addition MAX+PLUS II reads Xilinix netfiles and writes Standard Delay Format(SDF) files for a convenient interface to other industry-standard software.

Working In MAX+PLUS II
MAX+PLUS II offers a rich graphical user interface complemented with an illustrated, easy to use on-line help system.The complete MAX+PLUS II system 11 fully integrated applications that take you through every step of creating a design (A logic design including all subdesigns is called a "project" in MAX+PLUS II.

 You can work with different MAX+PLUS II applications simultaneously.

MAX+PLUS II Compiler

MAX+PLUS II compiler lies at the heart of the MAX+PLUS II system, providing powerful project processing that you can customize to achieve the best possible silicon implementation for your project.

The superb integration of the MAX+PLUS II software helps you to maximize your efficiency and productivity, putting you in control of your logic design environment.

Design Flow in MAX+PLUS II

The process of taking a project from conception to completion can be simplified as follows:

· Create a new design file or a hierarchy of multiple design files in any combination of MAX+PLUS II design editors, i.e, the Graphic, Text, and Waveform editors.

· Specify the top-level design file name as the project name.

· Assign a device family for the project. You can either allow the compiler to select a device for you or assign a specific device.

· Open the MAX+PLUS II Compiler window and choose the START button to complete the project. If you wish, you can turn on the Timing SNF Extractor module to create a netlist file for timing simulation and timing analysis.

· If the project compiles successfully, you can optionally perform a simulation timing analysis.

· To run timing analysis, open the MAX+PLUS II Timing Analyzer window, select an analysis mode and choose the start button.

· To run a simulation, you must first create vector inputs in a simulater channel file (.scf) in the Waveform Editor or in a vector file (.vec) in the Text Editor. Then open the MAX+PLUS II simulator Window and choose start button.

· Open the MAX+PLUS II programmer window and either insert a device into a programing adaptor on the Master Programing Unit (MPU) or connect to the BitBlaster, ByetBlaster, or FLEX download cable to a device that is mounted in-system.

· Choose the program button to program EPROM- or EEPROM- based device, or choose the configure button to configure an SRAM-based device.

Chapter 5

OVERALL OPERATION OF THE SYSTEM

OVERALL OPERATION OF THE SYSTEM
The DES Chip is a fully compliant hardware implementation of the DES encryption algorithm, suitable for a variety of applications. The DES on Chip provides a scalable hardware implementation of the Data Encryption Standard (DES). Its ease of use and high performance makes it a cost competitive solution to dedicated hardware or software alternatives. DES is a block-oriented encryption algorithm. Plaintext data is loaded 64-bits at a time along with the encryption key. Encrypted ciphertext is available 16 clock cycles later for Single-DES operation.

The same hardware can be used to decrypt a block of data. With decryption selected, a block of ciphertext is loaded along with the encryption key and 16 clocks later the plain-text is available(Upgradeable).

Functional Description:
The DES on Chip is made of Two main blocks the SubKey Generator, and the Data block. Further divided into S-boxes & Multiplexer.Encryption or decryption behavior is selected by the mode input port. If this input is high, the chip performs encryption, otherwise decryption is performed (upgradeable). 16 clock cycles are required to generate the subkeys.

When the loadk signal is high, The key is loaded. Then the kready signal becomes high after 16 clock cycles, dready signal becomes high. When the loadd signal is high, data is loaded. After processing dready signal is high.

The Operation Of The DES system:

Operations of the DES Chip is partitioned into modules as and described below :

Initial Permutation

After an initial permutation, the input data is split into two 32-bit words, left and right. This initial permutation changes the order of the bits of the input data.

Expansion Permutation
The right word is processed with an expansion permutation and XORed with the key processed by the key processor. This operation is known as expansion permutation as it expands the number of bits from 32 to 48 by changing the

order of some bits as well as by repeating the values of others.

S Boxes

The S boxes are look up tables with six input bits and four output bits. There are eight S boxes that transform the 48- bit input into a 32-bit output. The content of the S boxes was initially defined by IBM and then modified by the NSA.

P Permutation
The output of the S boxes is permuted in the P permutation block and then XORed with the left word. The P permutation is a straight permutation. None of the input bits are used twice or ignored.

Registers (LEFT reg and RIGHT reg)

The right word register is updated on the rising edge of CLK

with the results of the P permutation block XORed with the

left word. Also, the previous right word is stored in the left

word register.

Final Permutation

At the end of the each encryption or decryption operation, the left and right words are reassembled together and passed through the final permutation. The final permutation is the inverse of the initial permutation.

Key Processor

The key processor reduces the 64-bit input key to 56 bits by ignoring every eighth bit. At each rising edge of CLK the 56- bit key is divided into two 28-bit words. Depending on the current state of encryption, each word is circularly shifted

by one or two bits. A 48-bit subkey is extracted at each clock and XORed with the result of the expansion permutation, as explained above.

Design Flow in MAX+PLUS II

When the project is completely simulated in VERILOG the project file is imported MAX+PLUS II .

· Create a new design file or a hierarchy of multiple design files in any combination of MAX+PLUS II design editors, i.e, the Graphic, Text, and Waveform editors.

· Specify the top-level design file name as the project name.

· Assign a device family for the project. You can either allow the compiler to select a device for you or assign a specific device.

· Open the MAX+PLUS II Compiler window and choose the START button to complete the project. If you wish, you can turn on the Timing SNF Extractor module to create a netlist file for timing simulation and timing analysis.

· If the project compiles successfully, you can optionally perform a simulation timing analysis.

· To run timing analysis, open the MAX+PLUS II Timing Analyzer window, select an analysis mode and choose the start button.

· To run a simulation, you must first create vector inputs in a simulater channel file (.scf) in the Waveform Editor or in a vector file (.vec) in the Text Editor. Then open the MAX+PLUS II simulator Window and choose start button.

· Open the MAX+PLUS II programmer window and either insert a device into a programming adaptor on the Master Programming Unit (MPU) or connect to the BitBlaster, ByetBlaster, or FLEX download cable to a device that is mounted in-system.

· Choose the program button to program EPROM- or EEPROM- based device, or choose the configure button to configure an SRAM-based device.

MAX+PLUS II compiler lies at the heart of the MAX+PLUS II system, providing powerful project processing that you can customize to achieve the best possible silicon implementation for your project.

The superb integration of the MAX+PLUS II software helps you to maximize your efficiency and productivity, putting you in control of your logic design environment.

THE MAX+ PLUS II COMPILER REPORT

Project Information c:\windows\desktop\tomail\mem_keygen_intr.rpt

MAX+plus II Compiler Report File

Version 9.6 3/22/2000

Compiled: 12/20/2001 17:03:53

Copyright (C) 1988-2000 Altera Corporation

Any megafunction design, and related net list (encrypted or decrypted),

support information, device programming or simulation file, and any other

associated documentation or information provided by Altera or a partner

under Altera's Megafunction Partnership Program may be used only to

program PLD devices (but not masked PLD devices) from Altera. Any other

use of such megafunction design, net list, support information, device

programming or simulation file, or any other related documentation or

information is prohibited for any other purpose, including, but not

limited to modification, reverse engineering, de-compiling, or use with

any other silicon devices, unless such use is explicitly licensed under

a separate agreement with Altera or a megafunction partner. Title to

the intellectual property, including patents, copyrights, trademarks,

trade secrets, or maskworks, embodied in any such megafunction design,

net list, support information, device programming or simulation file, or

any other related documentation or information provided by Altera or a

megafunction partner, remains with Altera, the megafunction partner, or

their respective licensors. No other licenses, including any licenses

needed under any third party's intellectual property, are provided herein.

***** Project compilation was successful

** DEVICE SUMMARY **

Chip/ Input Output Bidir Memory Memory

 LCs

POF Device Pins Pins Pins Bits % Utilized LCs % Utilized

mem_keygen_intr

 EPF10K30ABC356-1 122 114 0 768 6 % 1051 60 %

User Pins: 122 114 0

Device-Specific Information: c:\windows\desktop\tomail\mem_keygen_intr.rpt

mem_keygen_intr

***** Logic for device 'mem_keygen_intr' compiled without errors.

Device: EPF10K30ABC356-1

FLEX 10K Configuration Scheme: Passive Serial

Device Options:

 User-Supplied Start-Up Clock = OFF

 Auto-Restart Configuration on Frame Error = OFF

 Release Clears Before Tri-States = OFF

 Enable Chip_Wide Reset = OFF

 Enable Chip-Wide Output Enable = OFF

 Enable INIT_DONE Output = OFF

 JTAG User Code = 7f

 MultiVolt I/O = OFF

Device-Specific Information: c:\windows\desktop\tomail\mem_keygen_intr.rpt

mem_keygen_intr

** ERROR SUMMARY **

Info: Chip 'mem_keygen_intr' in device 'EPF10K30ABC356-1' has less than 20% of pins available for future logic changes -- if your project is likely to change, Altera recommends using a larger device

Pin-out Diagram of DES Chip Generated by MAX+PLUS II

 --

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |

|AF o AF|

|AE o AE|

|AD o AD|

|AC o o o o o o o o o o AC|

|AB o o o o o o o o o o AB|

|AA o o o o o o o o o o AA|

|Y o o o o o o o o o o Y|

|W o o o o o o o o o o W|

|V o o o o o o o o o o V|

|U o o o o o o o o o o U|

|T o o o o o o o o o o T|

|R o o o o o o o o o o R|

|P o o o o o o o o o o P|

|N o o o o o o o o o o N|

|M o o o o o o o o o o M|

|L o o o o o o o o o o L|

|K o o o o o o o o o o K|

|J o o o o o o o o o o J|

|H o o o o o o o o o o H|

|G o o o o o o o o o o G|

|F o o o o o o o o o o F|

|E o o o o o o o o o o E|

|D o o o o o o o o o o D|

|C o C|

|B o B|

|A o A|

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |

 --

 EPF10K30ABC356-1

 Bottom View

Device-Specific Information: c:\windows\desktop\tomail\mem_keygen_intr.rpt

mem_keygen_intr

 A1 VCCINT C21 dout41 K23 memout39 U25 N.C. AD11 dout44

 A2 GND C22 memout29 K24 memout27 U26 GND AD12 dout18

 A3 kin6 C23 dout7 K25 N.C. V1 N.C. AD13 dout49

 A4 kin3 C24 RESERVED K26 kin38 V2 VCCIO AD14 GND

 A5 dout22 C25 GND L1 kin62 V3 N.C. AD15 dout42

 A6 RESERVED C26 VCCINT L2 memout33 V4 N.C. AD16 indata8

 A7 VCCIO D1 N.C. L3 kin5 V5 memout19 AD17 memout0

 A8 dout39 D2 ^nCONFIG L4 kin13 V22 dout0 AD18 VCCIO

 A9 RESERVED D3 ^MSEL1 L5 kin21 V23 dout60 AD19 memout13

 A10 GND D4 ^MSEL0 L22 kin37 V24 indata61 AD20 GND

 A11 dout12 D5 VCCINT L23 kin29 V25 indata17 AD21 memout41

 A12 dout2 D22 #TMS L24 memout32 V26 N.C. AD22 dout27

 A13 loadD D23 #TRST L25 kin54 W1 GND AD23 dout17

 A14 clk D24 ^nSTATUS L26 kin30 W2 N.C. AD24 dout16

 A15 indata47 D25 VCCIO M1 GND W3 N.C. AD25 #TCK

 A16 indata50 D26 N.C. M2 kin52 W4 memout14 AD26 VCCINT

 A17 indata19 E1 N.C. M3 kin50 W5 kin55 AE1 GND

 A18 indata42 E2 N.C. M4 memout47 W22 VCCIO AE2 GND

 A19 indata23 E3 dout52 M5 memout4 W23 kin39 AE3 kin44

 A20 GND E4 dout15 M22 memout24 W24 memout45 AE4 kin14

 A21 indata36 E5 dout1 M23 VCCIO W25 memout44 AE5 kin10

 A22 indata30 E22 memout20 M24 memout3 W26 indata60 AE6 dout26

 A23 VCCIO E23 memout22 M25 kin36 Y1 N.C. AE7 GND

 A24 dout11 E24 indata51 M26 VCCINT Y2 N.C. AE8 dout28

 A25 memout40 E25 indata5 N1 VCCINT Y3 kin23 AE9 memout15

 A26 VCCINT E26 indata24 N2 kin60 Y4 kin49 AE10 RESERVED

 B1 GND F1 VCCINT N3 kin25 Y5 kin59 AE11 dout61

 B2 kin17 F2 indata63 N4 kin57 Y22 kin28 AE12 dout36

 B3 kin1 F3 RESERVED N5 memout2 Y23 N.C. AE13 kin58

 B4 VCCIO F4 VCCIO N22 kin34 Y24 dout3 AE14 kin19

 B5 kin4 F5 indata33 N23 kin33 Y25 memout46 AE15 kin11

 B6 dout31 F22 indata53 N24 kin26 Y26 dout29 AE16 memout37

 B7 indata56 F23 dout13 N25 memout1 AA1 VCCINT AE17 indata9

 B8 dout58 F24 indata28 N26 GND AA2 kin9 AE18 indata37

 B9 RESERVED F25 indata35 P1 indata11 AA3 kin31 AE19 indata27

 B10 dout8 F26 dout25 P2 VCCIO AA4 dout24 AE20 dout9

 B11 dout32 G1 N.C. P3 indata13 AA5 kin43 AE21 Dready

 B12 RESERVED G2 kin45 P4 memout6 AA22 dout46 AE22 dout51

 B13 GND G3 memout10 P5 memout35 AA23 kin35 AE23 dout19

 B14 loadk G4 kin7 P22 indata62 AA24 kin27 AE24 memout43

 B15 indata46 G5 N.C. P23 memout12 AA25 indata32 AE25 GND

 B16 indata18 G22 indata52 P24 N.C. AA26 indata25 AE26 GND

 B17 indata7 G23 N.C. P25 memout11 AB1 VCCIO AF1 VCCINT

 B18 indata38 G24 dout6 P26 dout38 AB2 RESERVED AF2 kin18

 B19 indata31 G25 dout20 R1 GND AB3 dout63 AF3 VCCIO

 B20 dout10 G26 N.C. R2 indata12 AB4 dout50 AF4 indata16

 B21 dout55 H1 N.C. R3 dout4 AB5 kin61 AF5 dout53

 B22 GND H2 indata2 R4 indata22 AB22 dout34 AF6 RESERVED

 B23 dout21 H3 indata3 R5 memout30 AB23 indata10 AF7 VCCIO

 B24 dout45 H4 memout26 R22 dout56 AB24 indata43 AF8 dout33

 B25 GND H5 memout25 R23 indata59 AB25 indata48 AF9 dout47

 B26 GND H22 VCCINT R24 N.C. AB26 memout36 AF10 dout40

 C1 N.C. H23 GND R25 indata15 AC1 memout16 AF11 GND

 C2 GND H24 VCCIO R26 GND AC2 ^nCE AF12 dout54

 C3 kin51 H25 N.C. T1 GND AC3 #TDI AF13 kin41

 C4 kin53 H26 N.C. T2 memout7 AC4 kin63 AF14 indata57

 C5 kin47 J1 VCCINT T3 memout17 AC5 ^DCLK AF15 indata49

 C6 kin12 J2 indata55 T4 dout5 AC22 ^nCEO AF16 VCCIO

 C7 indata39 J3 memout28 T5 dout59 AC23 #TDO AF17 indata4

 C8 dout62 J4 indata20 T22 memout18 AC24 ^CONF_DONEAF18 memout5

 C9 GND J5 indata21 T23 N.C. AC25 VCCIO AF19 GND

 C10 RESERVED J22 indata54 T24 indata14 AC26 N.C. AF20 indata41

 C11 dout30 J23 indata44 T25 VCCIO AD1 kready AF21 indata34

 C12 dout57 J24 indata45 T26 VCCINT AD2 GND AF22 indata29

 C13 GND J25 N.C. U1 dout37 AD3 ^DATA0 AF23 dout48

 C14 VCCINT J26 GND U2 dout35 AD4 kin22 AF24 memout42

 C15 VCCIO K1 GND U3 memout8 AD5 kin20 AF25 GND

 C16 indata6 K2 kin46 U4 indata0 AD6 kin15 AF26 VCCINT

 C17 indata40 K3 memout34 U5 VCCINT AD7 kin2

 C18 indata26 K4 memout31 U22 dout14 AD8 kin42

 C19 dout23 K5 VCCIO U23 indata1 AD9 dout43

 C20 memout21 K22 memout38 U24 memout23 AD10 memout9

N.C. = No Connect. This pin has no internal connection to the device.

VCCINT = Dedicated power pin, which MUST be connected to VCC (3.3 volts).

VCCIO = Dedicated power pin, which MUST be connected to VCC (3.3 volts).

GND = Dedicated ground pin or unused dedicated input, which MUST be connected to GND.

RESERVED = Unused I/O pin, which MUST be left unconnected.

^ = Dedicated configuration pin.

+ = Reserved configuration pin, which is tri-stated during user mode.

* = Reserved configuration pin, which drives out in user mode.

PDn = Power Down pin.

@ = Special-purpose pin.

= JTAG Boundary-Scan Testing/In-System Programming or Configuration Pin. The JTAG inputs TMS and TDI should be tied to VCC and TCK should be tied to GND when not in use.

& = JTAG pin used for I/O. When used as user I/O, JTAG pins must be kept stable before and during configuration. JTAG pin stability prevents accidental loading of JTAG instructions.

$ = Pin has PCI I/O option enabled. Pin is not '5.0 V'-tolerant.

Device-Specific Information: c:\windows\desktop\tomail\mem_keygen_intr.rpt

mem_keygen_intr

** RESOURCE USAGE **

Logic Column Row

Array Interconnect Interconnect Clears/ External

Block Logic Cells Driven Driven Clocks Presets Interconnect

A1 7/ 8(87%) 4/ 8(50%) 5/ 8(62%) 1/2 0/2 7/22(31%)

A2 3/ 8(37%) 3/ 8(37%) 2/ 8(25%) 0/2 0/2 8/22(36%)

A3 8/ 8(100%) 3/ 8(37%) 2/ 8(25%) 1/2 0/2 8/22(36%)

A4 8/ 8(100%) 3/ 8(37%) 2/ 8(25%) 1/2 0/2 8/22(36%)

A5 4/ 8(50%) 0/ 8(0%) 3/ 8(37%) 1/2 0/2 3/22(13%)

A6 2/ 8(25%) 1/ 8(12%) 1/ 8(12%) 1/2 0/2 5/22(22%)

A7 8/ 8(100%) 1/ 8(12%) 3/ 8(37%) 1/2 0/2 6/22(27%)

A8 3/ 8(37%) 2/ 8(25%) 2/ 8(25%) 1/2 0/2 6/22(27%)

A9 2/ 8(25%) 1/ 8(12%) 1/ 8(12%) 1/2 0/2 5/22(22%)

A10 2/ 8(25%) 1/ 8(12%) 1/ 8(12%) 1/2 0/2 5/22(22%)

A11 8/ 8(100%) 1/ 8(12%) 2/ 8(25%) 1/2 0/2 8/22(36%)

A12 6/ 8(75%) 0/ 8(0%) 2/ 8(25%) 1/2 0/2 7/22(31%)

A13 2/ 8(25%) 2/ 8(25%) 0/ 8(0%) 0/2 0/2 4/22(18%)

A14 6/ 8(75%) 2/ 8(25%) 2/ 8(25%) 1/2 0/2 7/22(31%)

A15 7/ 8(87%) 3/ 8(37%) 0/ 8(0%) 1/2 0/2 8/22(36%)

A16 8/ 8(100%) 2/ 8(25%)

Peak memory allocated during compilation = 33,934K

Features

• Fully compliant 56-bit DES implementation

• Performs complete encryption based on DES standard

decryption supported(upgradeable)

• Encryption and decryption performed in 16 clock cycles

 High clock speed and low gate count achieved

• Fully synchronous design

Applications
• Secure internet applications

• Remote access servers

• Cable modems

• Satellite modems

• Hardware-based RSA challenges

Design Tool Requirements

Verilog/ Verilogger.

MAX+ PLUS.II.

Chapter 6

POSSIBLE SYSTEM UPGRADING/ENHANCEMENTS

Possible System Upgrading/Enhancements

Any system that does not have the ability of upgrading and enhancement is considered to be a closed system. Therefore it is essential for any project to have the ability to accept enhancements and upgrade. Our project offers the following options:
Chip Fabrication

Of course, the first enhancement is the fabrication of system on FPGA which was beyond our reach financially. The available programming device, which fabricates the design on the actual chip, is not easily available and even if it is arranged it costs thousands of dollars.

But on the arrangement of such a device & a compatible chip such as an FPGA or CPLD, The DES is ready to implement taking no time.

Decryption Upgrade

 At this stage our design only provides complete encryption in accordance with DES. But this design has features to enable decryption. We have implemented the design in such a way that by slight modification in coding the option of decryption (according to the standard of DES) can be performed. We have implemented the design in such a way that
APPENDICES

SYSTEM BLOCK REPRESENTATION

 ………………………… 64 bit key

 ………. ………

 Round

 …………….

Pc-2

 …………….

 48 Bit sub-key

 E P

 Expansion Permutation

 Permutation

1

 4

 4

2 4

 Output

 4

3

 2 Input

 4

4

4

 …………………

 XOR

Workload Distribution Between Members

 The development of such a complex project is not an easy task. The thorough understanding & devotion among group members is required to complete such a venture.

Workload Distribution With Respect to Percentage

 NAME ROLL NO PERCENTAGE

Syed Tariq Surfaraz 98_CE_166 30%

Kamran Qazi 98_CE_332 30%

Owais Masood 98_CE_185 20%

Khalid Khan 98_CE_214 20%

Workload Distribution With Respect to Tasks

 NAME Main Job Accomplished

Syed Tariq Surfaraz 98_CE_166 Mainly responsible for implementing

 algorithm in Verilog (coding).
Kamran Qazi 98_CE_332 Mainly responsible for implementing

 algorithm in Verilog(coding).

Owais Masood 98_CE_185 Mainly responsible for debugging

 simulation & development of the

 Report.
Khalid Khan 98_CE_214 Mainly responsible for Simulation

 and development of Report.

 But above facts are rough calculations; mostly all project members have worked together in the development of this Project.

Cost and Time Analysis Of The Project

Cost Analysis

The project was not much of a financial burden, as the two main Software, Verilogger Pro & MAX+PLUS II were available for free download via Internet.

 The main expenses were made on the following :

· Project Report (including copies).
· Project CD-ROM.
 The overall cost of the project was calculated to be near Rs.4000 to Rs.5000.
 The fabrication of system on FPGA was beyond our reach financially, therefore it was impossible for us to implement on the chip.
Time Analysis

 Implementation of the DES on Chip took us almost 5 months to complete.The time taken for completion is divided into 3 phases.

· The first 2 months were mostly spent on the study & understanding of the DES and implementing its alogithm in Verilog.

· 3rd and 4th month was spent in simulation of system in Verilogger Pro and MAX+PLUS II.

· The last month was spent mainly in Testing, Debugging of the system and Development of the Project Report.

List Of References

Cryptography And Network Security.

 (William Stallings)
CSCI 320 Computer Architecture Handbook on Verilog HDL.

 (Dr. Daniel C. Hyde)

Cadence Design Systems, Inc., Verilog-XL Reference Manual.

Digital Design and Synthesis with Verilog HDL.

 (Sternheim and W. Stapleton)

http://www.altera.com

http://www.comit.com/~rajesh/verilog/faq/alt_FAQ.html

http://www.siliconlogic.com/Verilog/

http://www.cl.cam.uk/users/mjcg/Verilog/

http://www.shore.net

http://www.syncad.com

http://www.cadence.com/

CODING

module mem_keygen_intrf(kin, indata, clk, loadk, loadD, memout, kready, dout, Dready);

input [63:0] kin, indata;

input clk;

input loadk, loadD;

output [63:0] dout;

output [47:0] memout;

output kready, Dready;

wire [4:0] roundk, rounde, addout;

wire wr;

wire [47:0] kout;

mux2to1 add_select(addout, rounde, roundk, wr);

syn_ram_16x48_irou memory(memout, kout, wr, addout, clk);

Keygen subkeymod(kin, clk, loadk, kout, roundk, wr, kready);

encrypt enmod(indata, clk, loadD, memout, 1'b0, dout, rounde, Dready);

endmodule

module Keygen (kin, clk, loadk, kout, round, wr, kready);

/***********************INPUTS*******************************/

input [0:63] kin; // 64 bit Key input to the system

input clk; // System clock

input loadk; // Loads the key

/**********************OUTPUTS******************************/

output [47:0] kout; // Sub key output to the memory module

output wr; // Memory write signal

output [4:0] round; // Memory address signal

output kready; // Indicates completion of subkeys generation

/*********************REGISTERED OUTPUTS********************/

reg [4:0] round;

reg kready;

reg wr;

/*********************LOCAL VARIABLES***********************/

reg [27:0] c, d;

reg [27:0] ctemp, dtemp;

wire [0:55] temp;

 always@(posedge clk)

 begin

 if(loadk)

 begin

c <={kin[56],kin[48],kin[40],kin[32],kin[24],kin[16],kin[8],

 kin[0],kin[57],kin[49],kin[41],kin[33],kin[25],kin[17],

 kin[9],kin[1],kin[58],kin[50],kin[42],kin[34],kin[26],

 kin[18],kin[10],kin[2],kin[59],kin[51],kin[43],kin[35] };

d <={kin[62],kin[54],kin[46],kin[38],kin[30],kin[22],kin[14],

 kin[6],kin[61],kin[53],kin[45],kin[37],kin[29],kin[21],

 kin[13],kin[5],kin[60],kin[52],kin[44],kin[36],kin[28],

 kin[20],kin[12],kin[4],kin[27],kin[19],kin[11],kin[3] };

 round <= 0;

 kready <= 0;

 wr <= 1;

 end

 else if(round < 15)

 begin

 c <= ctemp;

 d <= dtemp;

 round <= round+1;

 wr <= 1;

 end

 else

 begin

 c <= ctemp;

 d <= dtemp;

 kready <= 1;

 wr <= 0;

 round <= 5'bz;

 end

 end

 always@(round or c or d)

 begin

 case(round)

 0: begin

 ctemp={c[26:0],c[27]};

 dtemp={d[26:0],d[27]};

 end

 1: begin

 ctemp={c[26:0],c[27]};

 dtemp={d[26:0],d[27]};

 end

 2: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 3: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 4: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 5: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 6: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 7: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 8: begin

 ctemp={c[26:0],c[27]};

 dtemp={d[26:0],d[27]};

 end

 9: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 10: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 11: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 12: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 13: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 14: begin

 ctemp={c[25:0],c[27],c[26]};

 dtemp={d[25:0],d[27],d[26]};

 end

 15: begin

 ctemp={c[26:0],c[27]};

 dtemp={d[26:0],d[27]};

 end

 default:

begin

ctemp = ctemp;

dtemp = dtemp;

end

 endcase

 end

 assign temp={ctemp,dtemp};

 assign kout={temp[13],temp[16],temp[10],temp[23],temp[0],temp[4],

 temp[2],temp[27],temp[14],temp[5],temp[20],temp[9],

 temp[22],temp[18],temp[11],temp[3],temp[25],temp[7],

 temp[15],temp[6],temp[26],temp[19],temp[12],temp[1],

 temp[40],temp[51],temp[30],temp[36],temp[46],temp[54],

 temp[29],temp[39],temp[50],temp[44],temp[32],temp[47],

 temp[43],temp[48],temp[38],temp[55],temp[33],temp[52],

 temp[45],temp[41],temp[49],temp[35],temp[28],temp[31]};

endmodule

module encrypt(indata, clk, LoadD, subkey, mode, dout, round, Dready);

/***********************INPUTS*******************************/

input [0:63] indata; // 64 bit plain text input

input [47:0] subkey; // Rounds Subkeys input

input clk; // Clock input

input LoadD; // Loads the data

input mode; // mode = 0 or 1 for encrpytion or decryption respectively

/**********************OUTPUTS******************************/

output [63:0] dout; // 64 bit cipher text output

output [4:0] round; // Round number used for subkey selection

output Dready; // Indicates that output is valid

/*********************REGISTERED OUTPUTS********************/

reg [4:0] round;

reg Dready;

/*********************LOCAL VARIABLES***********************/

reg [31:0] left, right;

reg [4:0] index;

wire [31:0] b, rightbar, pout;

wire [47:0] xor1, expout;

 always@(posedge clk)

 begin

 if(LoadD)

 begin

 if(!mode)

 round <= 0;

 else

 round <= 15;

 index <= 0;

 Dready <= 0;

 end

 else if(index==0)

begin

 left <={indata[57],indata[49],indata[41],indata[33],indata[25],

 indata[17],indata[9],indata[1],indata[59],indata[51],

 indata[43],indata[35],indata[27],indata[19],indata[11],

 indata[3],indata[61],indata[53],indata[45],indata[37],

 indata[29],indata[21],indata[13],indata[6],indata[63],

 indata[55],indata[47],indata[39],indata[31],indata[23],

 indata[15],indata[7]};

 right <={indata[56],indata[48],indata[40],indata[32],indata[24],

 indata[16],indata[8],indata[0],indata[58],indata[50],

 indata[42],indata[34],indata[26],indata[18],indata[10],

 indata[2],indata[60],indata[52],indata[44],indata[36],

 indata[28],indata[20],indata[12],indata[4],indata[62],

 indata[54],indata[46],indata[38],indata[30],indata[22],

 indata[14],indata[6]};

index <= index + 1;

if(!mode)

 round <= round + 1;

 else

 round <= round - 1;

 end

 else if(index < 16)

 begin

 left <= right;

 right <= rightbar;

 index <= index + 1;

 if(!mode)

 round <= round + 1;

 else

 round <= round - 1;

 end

 else if(index == 16)

 begin

 left <= right;

 right <= rightbar;

 index <= index + 1;

 end

 else if(index == 17)

 begin

 left <= right;

 right <= left;

 Dready <= 1;

 round <= 5'bz;

 index <= index + 1;

 end

 end

 expermute ep(right, expout);

 assign xor1 = expout ^ subkey;

 s8box s8(b[3:0], xor1[5:0]);

 s7box s7(b[7:4], xor1[11:6]);

 s6box s6(b[11:8],xor1[17:12]);

 s5box s5(b[15:12],xor1[23:18]);

 s4box s4(b[19:16],xor1[29:24]);

 s3box s3(b[23:20],xor1[35:30]);

 s2box s2(b[27:24],xor1[41:36]);

 s1box s1(b[31:28],xor1[47:42]);

 permuteb pb(pout, b);

 assign rightbar = pout ^ left;

 fpermute fp(dout,{left,right});

endmodule

module expermute(inp,out);

 output [47:0] out;

 input [0:31] inp; //right of dataininiperm

 //arranged

 assign out={inp[31],inp[0],inp[1],inp[2],inp[3],inp[4],

 inp[3],inp[4],inp[5],inp[6],inp[7],inp[8],

 inp[7],inp[8],inp[9],inp[10],inp[11], inp[12],

 inp[11],inp[12],inp[13],inp[14],inp[15],inp[16],

 inp[15],inp[16],inp[17],inp[18],inp[19],inp[20],

 inp[19],inp[20],inp[21],inp[22],inp[23],inp[24],

 inp[23],inp[24],inp[25],inp[26],inp[27],inp[28],

 inp[27],inp[28],inp[29],inp[30],inp[31],inp[0]};

 endmodule

module fpermute(out,inp);

output [63:0] out;

input [0:63] inp;

 assign out={inp[39],inp[7],inp[47],inp[15],inp[55],inp[23],inp[63],inp[31],

 inp[38],inp[6],inp[46],inp[14],inp[54],inp[22],inp[62],inp[30],

 inp[37],inp[5],inp[45],inp[13],inp[53],inp[21],inp[61],inp[29],

 inp[36],inp[4],inp[44],inp[12],inp[52],inp[20],inp[60],inp[28],

 inp[35],inp[3],inp[43],inp[11],inp[51],inp[19],inp[59],inp[27],

 inp[34],inp[2],inp[42],inp[10],inp[50],inp[18],inp[58],inp[26],

 inp[33],inp[1],inp[41],inp[9],inp[49],inp[17],inp[57],inp[25],

 inp[32],inp[0],inp[40],inp[8],inp[48],inp[16],inp[56],inp[24] };

endmodule

module mux2to1(out,inp1,inp2,sel);

 output [3:0] out;

 input [3:0] inp1,inp2;

 input sel; //wire ?

 reg [3:0] out;

 always@(sel or inp1 or inp2)

 case(sel)

 0: out=inp1;

 1: out=inp2;

 endcase

 endmodule

module mux4to1(out,inp1,inp2,inp3,inp4,sel);

 output [3:0] out;

 input [3:0] inp1,inp2,inp3,inp4;

 input [1:0] sel; //wire ?

 reg [3:0] out;

 always@(sel or inp1 or inp2 or inp3 or inp4)

 case(sel)

 0: out=inp1;

 1: out=inp2;

 2: out=inp3;

 3: out=inp4;

 endcase

 endmodule

module permuteb(outb,inpb);

output [31:0] outb;

input [0:31] inpb;

 assign outb={inpb[15],inpb[6],inpb[19],inpb[20],

 inpb[28],inpb[11],inpb[27],inpb[16],

 inpb[0],inpb[14],inpb[22],inpb[25],

 inpb[4],inpb[17],inpb[30],inpb[9],

 inpb[1],inpb[7],inpb[23],inpb[13],

 inpb[31],inpb[26],inpb[2],inpb[8],

 inpb[18],inpb[12],inpb[29],inpb[5],

 inpb[21],inpb[10],inpb[3],inpb[24]};

endmodule

module syn_ram_16x48_irou (Q, Data, WE, Address, Inclock);

parameter LPM_FILE = "UNUSED";

parameter Width = 48;

parameter WidthAd = 4;

parameter NumWords = 16;

input [WidthAd-1:0] Address;

input [Width-1:0] Data;

input WE;

output [Width-1:0] Q;

input Inclock;

// internal reg

reg [Width-1:0] mem_data [NumWords-1:0];

reg [Width-1:0] tmp_q, tmp_q_reg;

reg [Width-1:0] ZERO, UNKNOWN, HiZ;

reg [8*256:1] mem_initf;

reg [WidthAd-1:0] clocked_address;

reg [Width-1:0] clocked_data;

reg clocked_we;

integer i;

function ValidAddress;

 input [WidthAd-1:0] Address;

 begin

 ValidAddress = 1'b0;

 if(^Address ==='bx)

 $display("%d:Error: Invalid address", $time);

 else if(Address >= NumWords)

 $display("%d:Error: Address out of bounds on RAM", $time);

 else

 ValidAddress = 1'b1;

 end

endfunction

initial

begin

 // check for number of words out of bound

 if(NumWords > (1 << WidthAd))

 $display("Error: Too many words defined");

 for (i=0; i < Width; i=i+1)

 begin

 ZERO[i] = 1'b0;

 UNKNOWN[i] = 1'bX;

 end

 for(i = 0; i < NumWords; i=i+1)

 mem_data[i] = ZERO;

 // load data to the RAM

 if (LPM_FILE != "UNUSED")

 begin

 // $convert_hex2ver(LPM_FILE, Width, mem_initf);

 $readmemh(mem_initf, mem_data);

 end

end

initial

begin

 clocked_data = 0;

 clocked_address = 0;

 clocked_we = 0;

 tmp_q = 0;

end

 always @(posedge Inclock)

 begin

 clocked_address <= Address;

 clocked_data <= Data;

 clocked_we <= WE;

 end

 always @(negedge Inclock)

 begin

 if (clocked_we)

 mem_data[clocked_address] <= clocked_data;

 end

 assign Q = mem_data[clocked_address];

endmodule // syn_ram_16x48_irou

module s1box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s11 s11box(out1,inp[4:1]);

 s12 s12box(out2,inp[4:1]);

 s13 s13box(out3,inp[4:1]);

 s14 s14box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s11(out,inp);

 output [3:0] out;

 input [3:0] inp;

 reg [3:0] out;

 always@ (inp)

 begin

 case(inp)

 0: out= 14 ;

 1: out=4 ;

 2: out= 13 ;

 3: out= 1 ;

 4: out= 2 ;

 5: out= 15 ;

 6: out= 11 ;

 7: out= 8 ;

 8: out= 3 ;

 9: out= 10 ;

 10:out= 6;

 11:out= 12 ;

 12:out= 5 ;

 13:out= 9 ;

 14:out= 0 ;

 15:out= 7 ;

 endcase

 end

 endmodule

module s12(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=0 ;

 1: out=15 ;

 2: out= 7 ;

 3: out= 4 ;

 4: out= 14 ;

 5: out= 2 ;

 6: out= 13 ;

 7: out= 1 ;

 8: out= 10 ;

 9: out= 6 ;

 10:out= 12 ;

 11:out= 11 ;

 12:out= 9 ;

 13:out= 5 ;

 14:out= 3 ;

 15:out= 8 ;

 endcase

 end

 endmodule

module s13(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=4 ;

 1: out= 1 ;

 2: out= 14 ;

 3: out= 8 ;

 4: out= 13 ;

 5: out= 6 ;

 6: out= 2 ;

 7: out= 11 ;

 8: out= 15 ;

 9: out= 12 ;

 10:out= 9 ;

 11:out= 7 ;

 12:out= 3 ;

 13:out= 10 ;

 14:out= 5 ;

 15:out= 0 ;

 endcase

 end

 endmodule

module s14(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=15 ;

 1: out= 12 ;

 2: out= 8 ;

 3: out= 2 ;

 4: out= 4 ;

 5: out= 9 ;

 6: out= 1 ;

 7: out= 7 ;

 8: out= 5 ;

 9: out= 11 ;

 10:out= 3 ;

 11:out= 14 ;

 12:out= 10 ;

 13:out= 0 ;

 14:out= 6 ;

 15:out= 13 ;

 endcase

 end

 endmodule

module s2box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s21 s21box(out1,inp[4:1]);

 s22 s22box(out2,inp[4:1]);

 s23 s23box(out3,inp[4:1]);

 s24 s24box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s21(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=15 ;

 1: out= 1;

 2: out=8 ;

 3: out=14 ;

 4: out= 6;

 5: out= 11;

 6: out= 3;

 7: out=4 ;

 8: out= 9;

 9: out= 7;

 10:out= 2;

 11:out= 13;

 12:out= 12;

 13:out= 0;

 14:out= 5;

 15:out= 10;

 endcase

 end

 endmodule

module s22(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=3 ;

 1: out=13 ;

 2: out= 4;

 3: out=7 ;

 4: out=15 ;

 5: out= 2;

 6: out= 8;

 7: out= 14;

 8: out= 12;

 9: out= 0;

 10:out= 1;

 11:out= 10;

 12:out= 6;

 13:out=9 ;

 14:out= 11;

 15:out= 5;

 endcase

 end

 endmodule

module s23(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=0 ;

 1: out= 14;

 2: out= 7;

 3: out= 11;

 4: out= 10;

 5: out= 4;

 6: out= 13;

 7: out= 1;

 8: out= 5;

 9: out= 8;

 10:out= 12;

 11:out= 6;

 12:out= 9;

 13:out= 3;

 14:out= 2;

 15:out= 15;

 endcase

 end

 endmodule

module s24(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=13 ;

 1: out= 8;

 2: out= 10;

 3: out= 1;

 4: out=3 ;

 5: out= 15;

 6: out= 4;

 7: out= 2;

 8: out= 11;

 9: out= 6;

 10:out= 7;

 11:out= 12;

 12:out= 0;

 13:out= 5;

 14:out= 14;

 15:out= 9;

 endcase

 end

 endmodule

module s3box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s31 s31box(out1,inp[4:1]);

 s32 s32box(out2,inp[4:1]);

 s33 s33box(out3,inp[4:1]);

 s34 s34box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s31(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=10 ;

 1: out= 0;

 2: out= 9;

 3: out= 14;

 4: out= 6;

 5: out= 3;

 6: out= 15;

 7: out= 5;

 8: out= 1;

 9: out= 13;

 10:out= 12;

 11:out= 7;

 12:out= 11;

 13:out= 4;

 14:out= 2;

 15:out= 8;

 endcase

 end

 endmodule

module s32(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=13 ;

 1: out= 7;

 2: out= 0;

 3: out= 9;

 4: out= 3;

 5: out= 4;

 6: out=6 ;

 7: out=10 ;

 8: out= 2;

 9: out= 8;

 10:out= 5;

 11:out= 14;

 12:out= 12;

 13:out= 11;

 14:out= 15;

 15:out= 1;

 endcase

 end

 endmodule

module s33(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=13 ;

 1: out= 6;

 2: out= 4;

 3: out=9 ;

 4: out= 8;

 5: out= 15;

 6: out=3 ;

 7: out=0 ;

 8: out=11 ;

 9: out= 1;

 10:out= 2;

 11:out= 12;

 12:out= 5;

 13:out= 10;

 14:out= 14;

 15:out= 7;

 endcase

 end

 endmodule

module s34(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=1 ;

 1: out= 10;

 2: out= 13;

 3: out= 0;

 4: out= 6;

 5: out= 9;

 6: out= 8;

 7: out= 7;

 8: out= 4;

 9: out= 15;

 10:out= 14;

 11:out= 3;

 12:out= 11;

 13:out= 5;

 14:out= 2;

 15:out= 12;

 endcase

 end

 endmodule

module s4box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s41 s41box(out1,inp[4:1]);

 s42 s42box(out2,inp[4:1]);

 s43 s43box(out3,inp[4:1]);

 s44 s44box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s41(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=7 ;

 1: out=13 ;

 2: out= 14;

 3: out= 3;

 4: out= 0;

 5: out= 6;

 6: out=9 ;

 7: out=10 ;

 8: out=1 ;

 9: out= 2;

 10:out= 8;

 11:out= 5;

 12:out= 11;

 13:out= 12;

 14:out= 4;

 15:out= 15;

 endcase

 end

 endmodule

module s42(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out= 13;

 1: out= 8;

 2: out= 11;

 3: out= 5;

 4: out= 6;

 5: out= 15;

 6: out=0 ;

 7: out=3 ;

 8: out=4 ;

 9: out= 7;

 10:out= 2;

 11:out= 12;

 12:out= 1;

 13:out= 10;

 14:out= 14;

 15:out= 9;

 endcase

 end

 endmodule

module s43(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=10 ;

 1: out= 6;

 2: out= 9;

 3: out= 0;

 4: out= 12;

 5: out= 11;

 6: out= 7;

 7: out= 13;

 8: out= 15;

 9: out= 1;

 10:out= 3;

 11:out= 14;

 12:out= 5;

 13:out= 2;

 14:out= 8;

 15:out= 4;

 endcase

 end

 endmodule

module s44(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=3 ;

 1: out=15 ;

 2: out=0 ;

 3: out=6 ;

 4: out=10 ;

 5: out=1 ;

 6: out=13 ;

 7: out=8 ;

 8: out=9 ;

 9: out=4 ;

 10:out=5 ;

 11:out=11 ;

 12:out=12 ;

 13:out=7 ;

 14:out=2 ;

 15:out=14 ;

 endcase

 end

 endmodule

module s5box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s51 s51box(out1,inp[4:1]);

 s52 s52box(out2,inp[4:1]);

 s53 s53box(out3,inp[4:1]);

 s54 s54box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

endmodule

module s51(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=2 ;

 1: out=12 ;

 2: out=4 ;

 3: out=1 ;

 4: out= 7;

 5: out= 10;

 6: out=11 ;

 7: out=6 ;

 8: out= 8;

 9: out= 5;

 10:out= 3;

 11:out= 15;

 12:out= 13;

 13:out= 0;

 14:out= 14;

 15:out= 9;

 endcase

 end

 endmodule

module s52(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=14 ;

 1: out=11 ;

 2: out=2 ;

 3: out=12 ;

 4: out=4 ;

 5: out=7 ;

 6: out=13 ;

 7: out=1 ;

 8: out=5 ;

 9: out=0 ;

 10:out=15 ;

 11:out=10 ;

 12:out=3 ;

 13:out=9 ;

 14:out=8 ;

 15:out=6 ;

 endcase

 end

 endmodule

module s53(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=4 ;

 1: out=2 ;

 2: out=1 ;

 3: out=11 ;

 4: out= 10;

 5: out= 13;

 6: out= 7;

 7: out= 8;

 8: out= 15;

 9: out= 9;

 10:out= 12;

 11:out= 5;

 12:out= 6;

 13:out= 3;

 14:out= 0;

 15:out= 14;

 endcase

 end

 endmodule

module s54(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=11 ;

 1: out= 8;

 2: out= 12;

 3: out=7 ;

 4: out=1 ;

 5: out=14 ;

 6: out=2 ;

 7: out=13 ;

 8: out= 6;

 9: out= 15;

 10:out= 0;

 11:out= 9;

 12:out= 10;

 13:out= 4;

 14:out= 5;

 15:out= 3;

 endcase

 end

 endmodule

module s6box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s61 s61box(out1,inp[4:1]);

 s62 s62box(out2,inp[4:1]);

 s63 s63box(out3,inp[4:1]);

 s64 s64box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s61(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=12 ;

 1: out= 1;

 2: out= 10;

 3: out= 15;

 4: out= 9;

 5: out= 2;

 6: out= 6;

 7: out= 8;

 8: out= 0;

 9: out= 13;

 10:out= 3;

 11:out= 4;

 12:out= 14;

 13:out= 7;

 14:out= 5;

 15:out= 11;

 endcase

 end

 endmodule

module s62(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=10 ;

 1: out= 15;

 2: out= 4;

 3: out= 2;

 4: out= 7;

 5: out= 12;

 6: out= 9;

 7: out= 5;

 8: out= 6;

 9: out= 1;

 10:out= 13;

 11:out= 14;

 12:out= 0;

 13:out= 11;

 14:out= 3;

 15:out= 8;

 endcase

 end

 endmodule

module s63(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=9 ;

 1: out=14 ;

 2: out= 15;

 3: out= 5;

 4: out= 2;

 5: out= 8;

 6: out= 12;

 7: out= 3;

 8: out= 7;

 9: out= 0;

 10:out= 4;

 11:out= 10;

 12:out= 1;

 13:out= 13;

 14:out= 11;

 15:out= 6;

 endcase

 end

 endmodule

module s64(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=4 ;

 1: out=3 ;

 2: out=2 ;

 3: out=12 ;

 4: out=9 ;

 5: out=5 ;

 6: out=15 ;

 7: out= 10;

 8: out= 11;

 9: out= 14;

 10:out= 1;

 11:out= 7;

 12:out= 6;

 13:out= 0;

 14:out= 8;

 15:out= 13;

 endcase

 end

 endmodule

module s7box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s71 s71box(out1,inp[4:1]);

 s72 s72box(out2,inp[4:1]);

 s73 s73box(out3,inp[4:1]);

 s74 s74box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s71(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=4 ;

 1: out=11 ;

 2: out=2 ;

 3: out=14 ;

 4: out=15 ;

 5: out=0 ;

 6: out=8 ;

 7: out=13 ;

 8: out= 3;

 9: out= 12;

 10:out= 9;

 11:out= 7;

 12:out= 5;

 13:out= 10;

 14:out= 6;

 15:out= 1;

 endcase

 end

 endmodule

module s72(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=13 ;

 1: out=0 ;

 2: out=11 ;

 3: out=7 ;

 4: out=4 ;

 5: out=9 ;

 6: out=1 ;

 7: out=10 ;

 8: out=14 ;

 9: out=3 ;

 10:out=5 ;

 11:out=12 ;

 12:out=2 ;

 13:out=15 ;

 14:out=8 ;

 15:out=6 ;

 endcase

 end

 endmodule

module s73(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=1 ;

 1: out=4 ;

 2: out=11 ;

 3: out=13 ;

 4: out=12 ;

 5: out=3 ;

 6: out=7 ;

 7: out=14 ;

 8: out=10 ;

 9: out=15 ;

 10:out=6 ;

 11:out=8 ;

 12:out=0 ;

 13:out=5 ;

 14:out=9 ;

 15:out=2 ;

 endcase

 end

 endmodule

module s74(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=6 ;

 1: out=11 ;

 2: out=13 ;

 3: out=8 ;

 4: out=1 ;

 5: out=4 ;

 6: out=10 ;

 7: out= 7;

 8: out= 9;

 9: out= 5;

 10:out= 0;

 11:out= 15;

 12:out= 14;

 13:out= 2;

 14:out= 3;

 15:out= 12;

 endcase

 end

 endmodule

module s8box(out,inp);

output [3:0] out;

input [5:0] inp;

wire [3:0] out1,out2,out3,out4;

wire [1:0] muxsel;

 assign muxsel={inp[5],inp[0]};

 s81 s81box(out1,inp[4:1]);

 s82 s82box(out2,inp[4:1]);

 s83 s83box(out3,inp[4:1]);

 s84 s84box(out4,inp[4:1]);

 mux4to1 mymux(out,out1,out2,out3,out4,muxsel);

 endmodule

module s81(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out= 13;

 1: out= 2;

 2: out= 8;

 3: out= 4;

 4: out= 6;

 5: out= 15;

 6: out= 11;

 7: out= 1;

 8: out= 10;

 9: out= 9;

 10:out= 3;

 11:out= 14;

 12:out= 5;

 13:out= 0;

 14:out= 12;

 15:out= 7;

 endcase

 end

 endmodule

module s82(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=1 ;

 1: out=15 ;

 2: out=13 ;

 3: out=8 ;

 4: out=10 ;

 5: out= 3;

 6: out=7 ;

 7: out=4 ;

 8: out=12 ;

 9: out= 5;

 10:out= 6;

 11:out= 11;

 12:out= 0;

 13:out= 14;

 14:out= 9;

 15:out= 2;

 endcase

 end

 endmodule

module s83(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out= 7;

 1: out= 11;

 2: out= 4;

 3: out= 1;

 4: out= 9;

 5: out= 12;

 6: out=14 ;

 7: out= 2;

 8: out= 0;

 9: out= 6;

 10:out= 10;

 11:out= 13;

 12:out= 15;

 13:out= 3;

 14:out= 5;

 15:out= 8;

 endcase

 end

 endmodule

module s84(out,inp);

output [3:0] out;

input [3:0]inp;

reg [3:0] out;

 always@(inp)

 begin

 case(inp)

 0: out=2 ;

 1: out=1 ;

 2: out=14 ;

 3: out=7 ;

 4: out=4 ;

 5: out=10 ;

 6: out=8 ;

 7: out=13 ;

 8: out=15 ;

 9: out= 12;

 10:out= 9;

 11:out= 0;

 12:out= 3;

 13:out= 5;

 14:out= 6;

 15:out= 11;

 endcase

 end

 endmodule

�EMBED Unknown���

�EMBED Unknown���

�EMBED Unknown���

�EMBED Unknown���

�EMBED Unknown���

 	 D

	 C

 		 Shifter

Memory

 +

 +

S-Box

 R

 L

I/P

I/P

+

4:1

Mux

S 11

S 12

S 13

S 14

	

 DES CHIP

Performs Smooth Encryption

Simulation

Results

Compile Report

Ready for chip fabrication

Coding

Compilation

Ideal Simulation

Waveforms

 Algorithms

Design Specification

Behavioral Description

RTL Description (HDL)

Logic Synthesis

Gate-Level Netlist

Functional Verification

And

Testing

Logical Verification & Testing

Floor Planning

Automatic Place & Route

Physical Layout

Layout Verification

Implementation

Design Specification

Behavioral Description

RTL Description (HDL)

Functional Verification

And

Testing

Logic Synthesis

Gate-Level Netlist

Logical Verification & Testing

Floor Planning

Automatic Place & Route

Physical Layout

Layout Verification

Implementation

PAGE
2

_1039178233.ppt

Private Key Encryption

_1039178235.ppt

Comparison of SE and AE

_1039178236.ppt

Definitions

_1039178234.ppt

Substitution and Transposition

_1039178231.ppt

Comparison of SK and PK Cryptography

DISTINCT FEATURES

SECRET KEY

PUBLIC KEY

NUMBER OF KEYS

Single key.

Pair of keys.

TYPES OF KEYS

Key is secret.

One key is private, and one key is public.

LENGTH OF KEYS

40-200 bits

512-2048 bits

RELATIVE SPEEDS

Faster.

Slower.

DISTINCT

FEATURES

SECRET KEY

PUBLIC KEY

NUMBER OF

KEYS

Single key.

Pair of keys.

TYPES OF

KEYS

Key is secret.

One key is

private, and

one key is

public.

LENGTH OF

KEYS

40-200 bits

512-2048 bits

RELATIVE

SPEEDS

Faster.

Slower.

_1039178232.ppt

Figure Comparison of SK and PK Cryptography

_1039178167.bin

_1039178172.bin

_1039178175.bin

_1039178170.bin

_1039178165.bin

