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Abstract

In this report, we describe the design and implementation of a fully pipelined architecture for implementing the JPEG baseline image compression standard.  The architecture exploits the principles of pipelining and parallelism in order to obtain high speed and throughput.  The design was synthesized to Altera’s FLEX 10K series FPGAs, and synthesis was carried out using Altera’s Max+PlusII environment. It has been estimated that the entire architecture can be implemented on a single FPGA to yield a clock rate of about 20 Mhz which would allow an input rate of 20 mega-samples/sec.

1 The Significance of Image Compression

Over the years, the need for image compression has grown steadily.  Currently, it is recognized as an ‘enabling technology’.  For example, image compression has been and continues to be crucial to the growth of multimedia computing.  In addition, it is the natural technology for handling the increased spatial resolutions of today’s imaging sensors, and evolving broadcast television standards.  Furthermore, image compression plays a crucial role in many important and diverse applications, including video-conferencing, remote sensing, document and medical imaging, facsimile transmission (FAX), and the control of remotely piloted vehicles in military, space, and hazardous waste control applications.  In short, an ever-expanding number of applications depend on the efficient manipulation, storage, and transmission of binary, gray-scale, or color images. 

Digital images require an enormous amount of storage space in their uncompressed form.  For example, a color image with a resolution of 1024 ٭ 1024 pixels with 24 bits per pixel would require 3.15M bytes in uncompressed form.  At a video rate of 30 frames per second, this requires a data rate of 94M bytes per second.  With the recent advances in video applications such as video teleconferencing, HDTV, home entertainment systems, interactive visualization and multimedia, there is an increasing demand for even higher bandwidth computing and communication systems.  Very high-speed implementation of efficient image compression techniques will significantly help in meeting that challenge.  

JPEG has defined an international standard for coding and compression of continuous tone still images.  This standard is commonly referred to as the JPEG standard.  The primary aim of the JPEG standard is to propose an image compression algorithm that would be generic, application independent and aid VLSI implementation of data compression. 

1.1 The JPEG System Architecture

The system architecture for our implementation is shown in Figure 1.  The entire architecture is organized as a linear multistage pipeline in order to achieve high throughput.  This figure reflects the sequence of computation in the JPEG Baseline process.  The architecture consists of the encoder model, and the entropy encoder.

The encoder model consists of a DCT module, a quantization module, and reordering logic.  The entropy encoder consists of several modules such as the zero runlength encoder, category selection unit, Huffman encoder and data packer.  The image to be 
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compressed is input to the architecture at the rate of one pixel per clock cycle.  The input data is processed by the various modules in a linear fashion, where each module itself is organized internally as a multistage linear pipe.  The compressed data is output by the system at a variable rate depending on the amount of compression achieved.  The design and implementation of each module is described in detail in the next section.

2 The Encoder Model

The encoder model has three main components: 1.) DCT module, 2.) Quantization module, and 3.) Zigzag reorder buffer.  In this section, we describe thoroughly the implementations of each of these modules.  Since the research on the various modules of JPEG is rich and mature, the descriptions presented here are limited only to cover the requirements for JPEG implementation in hardware.

2.1 DCT Module

The Discrete Cosine Transform is the most complex operation that needs to be performed in the baseline JPEG process.  This subsection starts with an introduction to our chosen DCT architecture, followed by a detailed mathematical explanation of the principles involved.  We then present a comparison with several other proposed architectures.

2.1.1 Basis for the Design.  

Our implementation of the Discrete Cosine Transform stage is based on an architecture proposed in [1].  Our choice of this particular architecture was due to a multitude of reasons.  The design uses a concurrent architecture that incorporates distributed arithmetic and a memory oriented structure to achieve high speed, high accuracy, and efficient hardware realization of the 2-D DCT.  

2.1.2 Mathematical Description of the Architecture.  

The Discrete Cosine Transform is an orthogonal transform consisting of a set of basis vectors that are sampled cosine functions.  The 2-D DCT of a data matrix is defined as
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where X is the data matrix, C is the matrix of DCT Coefficients, and Ct is the Transpose of C.  The normalized Nth order DCT matrix is defined as
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where, for an N x N data matrix, 
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for k = 1, 2, …, N,  l = 2, 3, …, N, and ck,l = N -1/2 for l = 1.  

The 2-D DCT (8 x 8 DCT) is implemented by the row-column decomposition technique.  We first compute the 1-D DCT (8 x 1 DCT) of each column of the input data matrix X to yield XtC.  after appropriate rounding or truncation, the transpose of the resulting matrix, CtX, is stored in an intermediate memory.  We then compute another 1-D DCT (8 x 1 DCT) of each row of CtX to yield the desired 2-D DCT as defined in equation (1).  A block diagram of the design is shown in Figure 2.1.

Denoting the 1-D DCT of an N x N data matrix X by Y = XC, then the (k, l)th element of Y is
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where xtk is the kth row vector of X and cl is the lth column vector of  C.  The expression in equation (4) suggests that for each xk, a row vector (yk,1, yk,2, …, yk,N ) can be generated concurrently.  

[image: image12.wmf]
Figure 2.1: 2-D DCT Architecture

Let the element of the data matrix X be represented by the 2’s complement code as follows:
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where x(j)k, m is the jth bit of xk, m which has a value of either 0 or 1, n is the number of bits xk, m carries, and x(n-1)k, m is the sign bit.  Substituting equation (5) into equation (4), we have
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where
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for j = 0, 1, …, n-1.

Fk,l is a function of the coefficients, cm,l, and bit patterns of xk,m.  Since the cm,l values are fixed numbers, Fk,l can be generated and stored in memory for all possible bit patterns of xk,m.  Consequently yk,l defined in equation (4) can be calculated concurrently for l = 1, 2, …, N by shifts and adds of values of Fk,l stored in memory.  This is the basic principle of distributed arithmetic with a memory lookup approach to compute the row vectors of a 1-D DCT concurrently.

A straightforward implementation of the above approach on a single FPGA would be difficult for an 8 x 8 (2-D) DCT because it would require 2 x 8 x 28 = 212 words of ROM.  This value is arrived at in the following manner.  One bit of each data element in a row (which is N elements long) is multiplied by a column of the DCT coefficient matrix (also N elements long), and the summation of the N results is to be stored.  Since there are 2N possible combinations of the data bits, and there are N columns in the DCT coefficient matrix, the number of data words that need to be stored for a 1-D DCT transformation are N x 2N.  A 2-D DCT process would therefore require 2 x N x 2N words of ROM.  For 8 x 8 matrices, this would equal 4096 words, or 4k words.  However, certain techniques can be used to reduce the required size of the ROM (lookup table).

Before discussing these techniques, it may be helpful to consider the schematic diagram of the architecture, shown in Figure 2.2.  It must be noted, however, that this schematic does not represent the actual implementation that we have used.  The actual diagram, along with an explanation of the differences, and their reasons, will be given later.

[image: image13.wmf]
Figure 2.2: Block Diagram of the 1-D DCT

As can be seen, the data sequence xk,1, …,xk,8 is shifted sequentially in time with bit parallel structure into the 8-stage Q shift registers at the input data rate 1/T.  After every 8T time interval, the contents of the Q shift registers are concurrently bit parallel loaded into the R shift registers.  The data in the R shift registers are then concurrently bit serial shifted out with the least significant bit first.  Now, instead of applying the bit patterns shifted out of the R shift registers directly to the ROM and Accumulator (RAC), a special technique is used to reduce the size of the lookup table.

By taking advantage of the specific pattern of the DCT matrix, it can be shown that
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for l = 1, 3, …, N-1 with uk,m = xk,m + xk,N - m + 1 and
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for l = 2, 4, …, N, with vk,m = xk,m – xk,N – m+ 1.

Equations (8) and (9) imply that with the variables u and v replacing the original data sequence x, the summation from 1 to N in (6) becomes a summation from 1 to N/2.  Therefore, the number of data lines used to address a ROM is reduced by a factor of 2, and the number of required words for each Fk,l is reduced by a factor of 2N/2.  This is the same as the first- stage butterfly used in most fast algorithms.  It does not require multiplications and can be implemented using serial adders and subtractors, which require much less logic resources (for an FPGA) or chip area (for ASIC implementation).  The values of Fk,l for storage in ROM were generated using a simple software routine written in C.  The code has been included in the appendix.

The output from the ROM’s, or lookup tables, is then added to the output of the accumulator, which has been shifted right by 1 bit.  The same operations are repeated n+1 times, except for the last time (sign bit), a subtraction instead of addition is executed.  Then, the outputs yk,m, for m = 1, 2, …, 8, are bit parallel loaded into the U shift registers simultaneously as shown in the schematic above, and then shifted out sequentially in time.  These intermediate data are stored in the transpose memory for matrix transposition, followed by another 1-D (8 x 1) DCT.

It is important to note that the values for Fk,l obtained from equation (7) are very small.  Since in this architecture, we are using fixed-point arithmetic, this can result in serious truncation errors.  To avoid this, the values of Fk,l are left shifted 8 times before storage (i.e. multiplied by 28).  The effect of this shift is cancelled out by the 8 subsequent right shifts in the shift-and-accumulate register (equivalent to divide by 28).

2.1.3 Differences in our implementation.  

The key difference between our implementation of the DCT module and the design proposed by [1], is that they have considered data blocks of 16 x 16 words in size (i.e. N = 16), whereas the block size that we must use is restricted to 8 x 8 words (i.e. N = 8).  This detail prevented a direct implementation of the design presented in [1].  Thus several changes had to be made in order to accommodate for the 8 x 8 DCT.

The design proposed in [1] handles 16 x 16 blocks of 8-bit data (with internal precision of 16 bits), whereas the JPEG specification DCT operates on 8 x 8 blocks of 8-bit pixel data.  At first the conversion to the 8 x 1 DCT seemed straightforward (by use of eight 8-bit Q and R-shift registers instead of sixteen 16-bit registers).  However, overflow and loss of precision soon became hindrances.

Overflow.  Addition of two signed 8-bit values could in some instances result in overflow conditions, which would necessitate the use of greater precision than 8-bits. However this means that more than 8 shifts would be required in order to obtain the correct results.

Loss of precision.  Also, the outputs of the RAC registers after the first 1-D DCT are of 10 bits precision, thus the second 8 x 1 DCT would have to handle at least 11 bits of data.  

Both these factors necessitate the use of greater precision than 8-bits.  It was not possible to merely add extra bits to the R shift registers, as they have to be emptied within the 8T time interval, after which the contents of the Q registers are transferred to the R shift registers.  On the other hand, extending the precision was absolutely necessary for proper operation. 

Our solution thus involved the use of 16-bit internal precision, as well as shifting 2 bits out of the R shift registers after every T time interval.  This modification had the desired result, as the R shift registers were cleared after every 8T time interval, due to the double shifting.  

In the next sub-section is detailed the actual implemented 2-D DCT architecture and an extensive description of its working.

2.1.4 Architecture Description

The detailed schematic diagram of the actual implemented 1-D (8 x 1) DCT is shown in Figure 2.3.  This design is used for both the row, and the column 8 x 1 DCT stages.

[image: image14.wmf]Figure 2.3: Schematic of actual 8 x 1 DCT

[image: image15.wmf]The input values to the first 1-D DCT stage are 8-bit, level shifted pixel values.  Both the Q and the R shift registers are 16 bits wide.  Thus the 8-bit input is sign extended to 16 bits, and then enters the pipeline as before.  After 8T, or 8 clock cycles, the Q registers contain a new set of data, which is transferred to the R registers at the next clock pulse.  Now, since there are 16 bits of data that need to be shifted out in 8 clock cycles, two bits are shifted out at a time.  In order to handle two bits from each R register at a time, the consecutive adder and subtractor stages have also been modified: instead of four 1-bit adders and subtractors, we have used four 2-bit adders and four 2-bit subtractors.  The schematic diagram describing the operation of one such adder is given in Figure 2.4.

Figure 2.4: 2-bit Adder


Similarly the number of buses to the RACs, as well as the number of ROM’s have been doubled.  There are now four buses, uA, uB, vA and vB, each providing 4-bit data to 16 ROM’s.  The 16 ROM’s are organized as 8 pairs, as shown in Figure 2.5.  

[image: image16.wmf]
Figure 2.5: Internal Organization of RAC

Four of the pairs are addressed by the two u buses, while the other four are addressed by the two v buses.  In each pair, the first ROM (ROMA) is addressed by either uA or vA, and the second (ROMB) is addressed by either uB or vB.  The ROM’s in each pair are identical, since they both handle data from the same source, and all produce outputs 11-bit long.  Each of the pairs is connected to a shift-and-accumulate register (SAR).  Combined as shown, these blocks form the RAC unit described before.

The RAC block functions in the following manner: in each clock cycle, addresses are applied to the inputs of both the ROM’s, ROMA and ROMB, from the four u and v buses, and the contents of the shift-and-accumulate register (SAR) are arithmetic-right shifted.  

One important fact is that in our implementation, an 8-bit buffer is concatenated to the LSB of the SAR, and all arithmetic-right shift operations are performed on the whole {SAR, buffer} combination.  This buffer only helps to preserve the last 8 bits shifted out of the SAR, and is not involved in any of the addition/subtraction operations.  The reason for this preservation is that in our implementation, 16 shifts are performed instead of just 8.  As was mentioned before, the first 8 right-shifts are sufficient for canceling the effect of the 8 bit left-shifted Fk,l values (refer to last paragraph, section 3.1.2), but the next 8 right-shifts can cause loss of data due to truncation, unless accounted for.

The output from ROMA is then added to the shifted contents of the SAR.  The 8-bit buffer is not included in this addition.  The result is then placed back in the SAR, and then arithmetic-right shifted combinationally (i.e. within the same clock cycle).  This arithmetic shifted result is then added to the output from ROMB.  At the next clock pulse, this twice shifted and added result is reentered into the SAR.  

At the end of 8 clock cycles the least significant 12 bits of the {SAR, Buffer} combination are bit parallel loaded into the U registers simultaneously, and then shifted out sequentially in time.  New outputs are produced from the U registers every clock cycle, and are input to the transpose buffer for reordering prior to the second 1-D DCT.

2.1.5 [image: image17.wmf]The Transpose Buffer

Figure 2.6: Structure of the Transpose Buffer

The transpose buffer is shown in Figure 2.6.  The implementation is based on a design suggested in [2].  The buffer consists of an 8 x 8 array of register pairs organized as shown.  The data is input to the transpose buffer in row-wise fashion until all the 64 registers are loaded.  The data in those registers are copied in parallel onto the corresponding adjacent registers, which are connected in column wise fashion.  While the data is being read out from the column registers, the row registers will keep receiving further data from the DCT module.  Thus, the output of the row-wise DCT computation is transposed for the column-wise DCT computation.  The transpose buffer has a latency of 65 clock cycles.  Thus the 8 x 8 DCT pipeline has a total latency of 103 clock cycles, as both the 1-D DCT stages have a latency of 19 clock cycles.

2.1.6 Comparison to Other Approaches

Due to the wide spectrum of applications in which the DCT is employed, the research on DCT circuits is rich and mature, resulting in a vast amount of literature.  For the implementation of the DCT stage, several architectures were considered.  The direct implementation of equation (1) (Sec 3.1.3) is computationally intensive, requiring 1024 multiplications and 1024 accumulations to calculate an 8x8 DCT.  In order to reduce the number of required multiplications many implementations in the literature use various forms of butterfly structures with fewer number of multipliers.  However, many multipliers are still required to maintain high throughput.  Multipliers require a relatively large amount of logic resources.  Moreover, the butterfly approach often results in an irregular architecture and complicated routing which may also result in a large circuit area.  Also, since multiple stages of multiplications are accompanied by rounding and truncation in finite-precision arithmetic, fixed internal precision can cause resulting accuracy to be seriously degraded.

The architecture that we choose for our implementation uses distributed arithmetic and a memory-oriented structure.  The merits of this architecture are: (1) saving of circuit area by replacement of multipliers by memory look-up tables; (2) the expectation of higher accuracy results given the same internal precision because the accumulated results undergo fewer rounding/truncation stages than the other structures; (3) more structural regularity which allows modular design; and (4) area saving and high speed operations resulting from the combined advantages of bit-serial and bit-parallel structures.  These features lead to a high performance design composed of memories, adders and registers only.  No multipliers are required.

Compared to the DCT stage used in the baseline JPEG architecture proposed in [2], the latency of this DCT approach is less.  The 1-D DCT latency in [2] is 59 cycles, compared to 19 for the architecture implemented here.

2.2 Quantization Module

The quantization module is shown in Figure 2.7.  It consists of a ROM to store the quantization table and an 11 x 8 bit multiplier.  The quantization step in the JPEG algorithm involves multiplying the output of the DCT stage with a set of predefined values from a quantization table.  Since the DCT architecture is organized as a linear multistage pipeline, in order to maintain the same throughput throughout the pipeline, we needed to implement a high speed, pipelined multiplier.  The multiplier we have implemented has a Wallace-tree design.  A schematic is shown in Figure 2.8.  The 8-bit multiplier value is retrieved from the Quantization Table each clock cycle, [image: image18.wmf]and the coefficient values from the DCT stage are input as the 12-bit multiplicands.

[image: image19.wmf]
Quantization is basically a division process that is converted into multiplication by simply inverting the quantization table values.  In order to maintain precision, these inverted values are biased by multiplying them with 28 (i.e. 8 times left shift) prior to storage.

The product of multiplication is a 20-bit value, whose least significant 8 bits are discarded.  This has a reverse biasing effect (i.e. 8 times right shift) on the out put. 

[image: image20.wmf]
Figure 2.8: Wallace Tree Multiplier for the Quantization Module
2.3 Zigzag Reordering Buffer

Each block of data that is output by the quantization module needs to be reordered in a zigzag fashion before being forwarded to the entropy encoder.  This reordering is achieved using an 8 x 8 array of register pairs organized in a fashion similar to the transpose buffer. This implementation is also based on a design suggested in [2].

3 The Entropy Encoder

The function of the entropy encoder is to code the quantized coefficients from the encoder model using variable length encoding.  Our implementation of the entropy encoder is based on a design suggested in [2].  The reasons for this choice are several: first and foremost was the need for a pipelined architecture that consumes input data at the same rate as the Encoder Model.  Another reason was the unavailability of literature on JPEG specific architectures for entropy encoders.

[image: image21.wmf]Figure 3.1: Entropy Encoder Architecture

The architecture of the entropy encoder is shown in Figure 3.1.  As can be seen, the entropy encoder consists of 1.) Zero runlength coder, 2.) Category selection unit, 3.) Strip logic, 4.) Huffman encoder, and 5.) Data packer.  With the exception of stages (1) and (3), all the stages were either heavily modified, or completely redesigned, in order to reduce design complexity.  The main aim behind this approach to the implementation of the entropy encoder is to achieve a linear pipe with a small clock period for each stage. 

Brief Outline of the Entropy Encoder

The various steps of the entropy encoder algorithm are briefly outlined as follows. Each block of quantized pixel data consists of one DC coefficient, followed by 63 AC coefficients.

The first step is to calculate ∆DC, which is the difference between the current DC coefficient and the DC coefficient of the previous block.  Also, the JPEG algorithm requires that the DC/AC coefficients are decremented by one if the sign of the coefficient is negative.  

The next step is to extract the zero runlength count from the stream of the AC coefficients within that block.  The block data is thus converted into a stream of AC coefficients with an associated count value, indicating the number of zeros preceding that coefficient.  The runlength count is represented as a 4-bit field.  When the runlength is greater than 16, two special symbols, ZRL and EOB are used to code the data depending on certain conditions.  A zero runlength symbol ZRL (represented in JPEG as [F,0]) is inserted within the data whenever a runlength of 16 zeroes is encountered.  The end-of-block symbol EOB (represented in JPEG as [0,0]) is inserted whenever it is detected that the rest of the AC coefficients until the end of the block are zeroes.  A 4-bit status field is generated corresponding to each coefficient, which indicates if the data being output is a DC or AC coefficient, ZRL or EOB symbol.  The above steps are performed within the zero runlength coder. 

Within the category selection circuit, each DC and AC coefficient is associated with a corresponding category depending on the magnitude of the coefficient.  The definition of categories as defined by the JPEG standard is shown in Table 4.1.  Each element in the stream of data coming out of the category selection unit consists of coefficients, the corresponding category, the runlength count and the four-bit status.  It should be noted that the data stream still contains all 64 coefficients including the streaks of zero coefficients that have been encoded as zero runlength counts.  Also if an EOB symbol follows one or more ZRL symbols within the data stream, the ZRL symbols are redundant and must be stripped off the data stream.  The above functions are performed within the strip logic.

	Category
	DC Difference
	AC Coefficient

	0
	0
	0

	1
	-1, 1
	-1, 1

	2
	-3, -2, 2, 3
	-3, -2, 2, 3

	3
	-7, …, -4, 4, …, 7
	-7, …, -4, 4, …, 7

	4
	-15, …, -8, 8, …, 15
	-15, …, -8, 8, …, 15

	5
	-31, …, -16, 16, …, 31
	-31, …, -16, 16, …, 31

	6
	-63, …, -32, 32, …, 63
	-63, …, -32, 32, …, 63

	7
	-127, …, -64, 64, …, 127
	-127, …, -64, 64, …, 127

	8
	-255, …, -128, 128, …, 255
	-255, …, -128, 128, …, 255

	9
	-511, …, -256, -256, …, 511
	-511, …, -256, -256, …, 511

	10
	-1023, …, -512, 512, …, 1023
	-1023, …, -512, 512, …, 1023

	11
	-2047, …, -1024, 1024, …, 2047
	


Table 4.1:JPEG Category Definitions

During the next step, each data element consisting of {AC/DC coefficient, runlength count, category, status} output by the strip logic is converted into a corresponding element: {AC/DC coefficient, category, Huffman code, Huffman code length}.  The Huffman code is selected based on the runlength count, category and status fields.  The sets of Huffman codes are pre-stored in a table and can be changed depending on the application.  The category and the Huffman code length fields are used in the data packer unit to pack the variable length compressed data (comprised of the DC/AC coefficient and the Huffman code) into a stream of fixed length compressed data units to be output by the compression chip.  

The implementation of each module within the entropy encoder architecture is described below.

3.1 Zero-Runlength Coder

The zero-runlength coder module performs the functions as described in the earlier part of this section.  The module consists of three stages and thus a latency of 3 cycles.  The first stage consists of logic for computing ∆DC while the second stage derives the runlength count and the third stage is used for decrementing negative coefficients.  The various stages of the zero runlength coder are shown in Figure 3.2.

Architectural Description

Before we describe the flow of data through this stage, it would help to explain the working of the control logic.  The control logic block is primarily responsible for two things: differentiating between DC and AC coefficients, and maintaining the zero-counter.  The control logic is also responsible for generating signals that indicate conditions such as the occurrence of 16 consecutive zeros, end-of-block, and whether [image: image22.wmf]the output data value represents a DC or an AC coefficient.

Figure 3.2: Zero-runlength coder

The control logic differentiates between DC and AC coefficients by use of a ‘coefficient counter’ that counts to a maximum value of 63, and then resets.  The zero value in this counter means that a DC coefficient is present at the input.  An AC coefficient is present otherwise.  This counter increments every time new data is made available as input to the runlength coder.

As can be seen, the design consists of three stages.  The runlength coder receives quantized input data from the Zigzag Reordering buffer.  The value of the DC coefficient of the previous 8 x 8 block is stored in the ‘pDC’ register.  In case this is the first block if data, pDC contains zero.  The data received from the input latch is routed along two paths to a multiplexer - one path for AC coefficients and the other for DC.  Based on the contents of the coefficient counter, the control logic selects the appropriate input of the multiplexer.  In the case of a DC coefficient, ∆DC appears at the B input to the multiplexer, which is selected by the control logic.  At the next clock pulse, the value of the current DC coefficient is placed in the pDC register.  

The values in the coefficient counter and the intermediate latch are used to generate the DC, AC and EOB signals.  The AC signal is set high whenever both the current coefficient and the coefficient counter have non-zero values.  Thus no signals are set for zero-valued coefficients.  The contents of the intermediate latch and the zero-runlength counter are used to generate the ZRL signal.  The zero-counter register counts the number of consecutive zero valued coefficients appearing in the intermediate latch.  When the count reaches 16 consecutive zeroes, the ZRL signal is set to high.  The EOB signal line is set to high if the coefficient counter reaches a count of 63, and the corresponding coefficient value is zero.  Also, when the EOB signal is generated, the runlength counter is reset.  This is to indicate that the current block has been completely runlength encoded and a new block is about to start.  It is important to note that these four status signals are mutually exclusive.

The BLKEND signal is used to identify the end of a block, regardless of the current coefficient value.  This signal is used in subsequent stages.  Before the final output latch is a simple mechanism for decrementing the negative coefficients in the data. 

3.2 Category Selection Unit

This stage of the JPEG process is implemented using our original design.  Category selection is defined in the JPEG compression standard as shown in Table 4.1. 

A straightforward implementation of category selection would require storing the ranges in memory and comparing the input data with those pre-stored values which requires complex address decoding and control logic.  However, the table memory can be avoided and the entire category selection can be achieved with a simple combinational circuit.  This circuit operates like an encoder that converts the given coefficient into the corresponding category in a single clock cycle.  The circuit is given in Figure 3.3.  However, it should be noted that the negative coefficients must be decremented by one before applying the conversion logic as per the JPEG standard.  This decrementing is performed by the last stage of the zero runlength coder in our implementation.
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Figure 3.3: Category Selection Unit

3.2.1 Architectural Description

As can be seen from the schematic, the category selection unit has been organized in the form of two modified priority encoders, whose outputs are connected to a multiplexer.  The outputs are selected on the basis of the MSB of the coefficient.

3.3 Strip Logic

The strip logic shown in Figure 3.4 is a slightly modified version of that presented in [2] and consists of five stages instead of four.  The two main aims of this stage are to discard the zero-valued coefficients, as well as the redundant ZRL symbols occurring before an EOB symbol.
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Figure 3.4: Strip Logic structure

Each stage has three registers to hold the coefficient, runlength count and category fields corresponding to a data element output by the category selection unit and a set of 1-bit registers to hold the corresponding status.  The status bits are decoded and used to strip the zero-valued coefficients and also to strip off the ZRL symbols that precede an EOB symbol.  It should be noted that there could be a maximum of three ZRL symbols preceding an EOB symbol.  The strip logic acts as a five-stage buffer through which the compressed data elements, after the removal of zero coefficients travel, before being forwarded to the Huffman encoder.  The valid bit signal is set to high whenever valid data is being output by the strip logic for Huffman encoding.  It must be noted that the ZRL bit needs to be reset whenever a ZRL symbol has been deleted from the data stream.

3.3.1 Architectural Description

The inputs to the strip logic are the AC/DC coefficients, the category of the coefficient, the corresponding zero runlength counts, and the five status signals generated at the runlength coder.  The operation of this stage proceeds in the following manner: the load control logic is simply the logical ORing of the DC, AC, ZRL, and EOB signals.  Thus whenever a zero coefficient appears without the ZRL signal being set, it is discarded.  Upon the occurrence of nonzero coefficients, or ZRL symbols, the contents of each stage propagate to the next.  The second task of discarding redundant ZRL symbols is performed in this manner: the first of a series of consecutive ZRL symbols (at most 3) propagates through to the fourth stage.  If an EOB signal follows the last ZRL symbol in the series, all the preceding ZRL symbols will be ignored by the ZRL Modifier Logic.

3.4 Huffman Encoder Module

The Huffman encoder module that we have implemented is a heavily modified version of the design suggested in [2].  It consists of Huffman code tables stored in random access memory modules and logic for replacing the category, runlength count pairs with the corresponding Huffman codes.  The table is accessed by using the {runlength, category} pair for addressing.  The input data passes through each of the two stages, and depending on the address, the corresponding Huffman code and the code length are output.  The hardware organization is shown in Figure 3.5. 

3.4.1 Architectural Description

The Huffman encoder receives category, runlength, coefficient, and status signal inputs from the strip logic.  The encoder also receives the ‘valid input’ signal generated by the strip logic.  The two AC and DC memory modules have as inputs the {runlength} and {category, runlength} data fields respectively, and based on these values, the modules output the appropriate Huffman codes.  The output of these modules is a 20 bit value where the most significant 4 bits represent the actual length of the Huffman code present in the remaining 16 bits.

The outputs are connected to the inputs of a multiplexer.  The multiplexer’s input select pins are connected to the DC status signal, and the ORed result: AC+ZRL+EOB.  Therefore in the case of a DC input signal, the Huffman code generated by the DC memory module is output to the 20 bit output latch, in the case of either an AC, ZRL or EOB signal, the AC memory module output is chosen.   
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Figure 3.5: The Huffman Encoder Module

The control logic has two purposes: determining whether valid data is present at the inputs, and generating the valid output signal.  Valid data is identified by the use of the status signals and the ‘valid input’ signal.  In case valid data is present at the input terminals, the control logic enables the output latches to receive the data, and generates the valid output signal.

3.5 The Data Packer

The Data Packer unit shown in Figure 3.6 is a heavily modified version of the one suggested in [2].  It is used to convert variable length compressed data into fixed length compressed data stream.  The logic consists of registers A and B, two left-shift units, a masking logic unit, two ORing logic units, and control logic, which includes the two registers LENGTH and ENDP. 

3.5.1 Architectural Description

The data packer works as follows.  The Huffman code first enters the first left shifter.  Here it is variably left shifted a number of times corresponding to the category of the coefficient.  At the same time the coefficient enters the masking logic, whose function it is to set to zero the unnecessary bits of the coefficient.  These unnecessary bits are determined using the category of the coefficient.  The Huffman code is then bit-aligned with the masked category data, the result being placed in Register A at the clock pulse.  It should be noted that the total length of the result cannot exceed 27 bits, as the maximum length of the Huffman code is 16 bits and that of the coefficient is 11 bits.  The LENGTH register contains the value ‘category + code-length + 1’.  1 is added since the values of code-length start at zero, for a Huffman code 1 bit long.  Another important point is that that all operations performed up till the bit alignment are performed combinationally.  
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Figure 3.6: Data Packer

The ENDP register act as a pointer to positions in the B register and is used to hold the number of shifts needed to pack together successive data received from A.  If B is empty, the ENDP register contains 48, which represents the length of the B register, otherwise it points to the bit position next to the least significant useful bit.  At the second left shifter, the contents of A are left shifted ENDP – LENGTH times, before being placed in B.  This bit aligns the {Huffman code, masked category} combination to the right of any previously present contents of B.  This number of shifts is then placed into the ENDP register.  At the nest clock cycle, the next contents of A are shifted in the same manner, so that the data is concatenated to the right of the present contents of B.  This occurs every clock cycle, until the value of ENDP falls below 33, at which point the most significant 16 bits of B are transferred into the ‘DataOut’ register, the contents of B are left shifted 16 times, and the ENDP register is incremented by 16.  The process thus continues until the BLKEND signal is received, at which point, the contents of B are transferred to ‘Data Out’ irrespective of the value of ENDP.  If the value of ENDP at this point is greater than 33, extra 1’s need to be padded to the left of the useful bits in the ‘Data Out’ register. 

4 Conclusion

In this report we have described the implementation of a fully pipelined architecture for JPEG baseline image compression standard.  The architectures for the various stages are based on efficient and high performance designs suited for VLSI implementation.  The implementation was tested for functional correctness using Verilog with Altera’s tools.  

There were several reasons for our choice of implementing the JPEG compression algorithm.  Firstly, we wanted to work on the implementation of compute intensive algorithms in hardware using HDLs.  Secondly, the JPEG compression standard was a good candidate as it does not specify any particular architecture for its implementation and in this way permits the implementers to try various innovations. 

We had set some goals of our work.  First was the implementation of a high throughput and pipelined design of the entire JPEG algorithm.  Secondly, we wanted to test it in a practical setup.  We were successful in implementing a pipelined architecture on a single chip.  However, a practical setup for testing the design could not be realized due to the unavailability of necessary hardware and design tools.  We were limited to the student versions of design software and a low capacity evaluation board that too was shared among various working groups.  This seriously impeded our work as our design called for full-featured versions of design software and large capacity FPGA that were arranged in the final stages of our work.  Although the original intent was to implement the full-color baseline JPEG encoder, it soon became apparent that this would be extremely difficult, given the constraints. 

Another severe hindrance to our project work was the lack of appropriate guidance on design and implementation using HDLs.  All work in this regard was carried out through self-study.  Also, in the absence of any notable archetypes, most of the experience was gained through trial and error.  

Our project provided us the opportunity to experiment with various design tradeoffs and on numerous occasions during our implementation we found that we needed to try different innovations to suit our requirements.  

Our architecture has been completely synthesized and work for its actual verification in a practical setup is in progress.
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Figure 1: JPEG System Architecture





Figure 3.7: Structure of Quantization Module
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