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Abstract 

In this report, Optimal Control is applied to a Robotic Wheelchair. The report will review 

the original project of robotic wheelchair control. A detailed study of the mathematical 

model of the robotic wheelchair system will also be included. Then, Optimal Control will be 

investigated by applying several design concepts with detailed comments about each design 

applied. A conclusion of the work will end the report giving future recommendations and 

comments. 
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0. Introduction 

 

Modern control strategies impacted many applications in many disciplines. One 

of these is the Optimal Control designs which pioneered in the early 60’s of the 

20th century.  

 

In this report, Optimal Control is applied to a Robotic Wheelchair. The report 

will review the original project of robotic wheelchair control. A detailed study 

of the mathematical model of the robotic wheelchair system will also be 

included. Then, Optimal Control will be investigated by applying several design 

concepts with detailed comments about each design applied. A conclusion of 

the work will end the report giving future recommendations and comments. 
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1. Original Project Overview 

 

In this section of the report, first, brief discussion of original project and work 

that is done in Kanagawa Institute of Technology will be presented. Secondly, 

the specific part of the project studied here is discussed. Final part of this 

section will be designated for the explanation of the robotic wheelchair 

mechanism. 

 

1.1.  Original Work 

 

The main purpose of the project is to assist aged (old) individuals supporting 

themselves in using wheelchairs. Regularly, for a person using a wheelchair, the 

road or path the wheelchair maneuver through could include bumps or steps. 

Even if the step to be climbed is small, an old person ability to get over it most 

probably will need a assisting. 

 

This work is presented in the paper by (Takahashi, et al., 2000). Other work 

related to the work can be found in (Takahashi, et al., 2005) and (Takahashi, et 

al., 2003). 
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Basically, the proposed system goal is assist the wheelchair user to be able to 

climb up an about 10 cm step without help. The proposed system consists of 

two stages of step climbing. First, front wheel rising is done. Secondly, after 

raising the wheelchair, an inverse pendulum control is applied. In order to 

firstly obtaining the front wheel rising, wheelchair’s rear wheel shaft position is 

moved using a small force. When a person raises the wheelchair, a quick rising 

is expected. The force required to raise the front wheel 10 cm is inversely 

proportional to the rear wheel shaft position. So, a mechanical sliding of rear 

wheel shaft to change position for about 50 mm is set when a rising mechanism 

is applied. (Takahashi, et al., 2000) 

After completing the part of front wheel rising of the wheelchair, the system 

enters the inverse-pendulum-like phenomenon. This part will be discussed in 

next section. 

 

1.2. Inverse Pendulum Control 

 

In this section of the report, inverse pendulum phase of the wheelchair in hand 

is discussed. In figure 1, step climbing system stages are shown. Both cases of 

human assisting and robotic assisting is presented in the figure. As it is obvious, 

this report will investigate the control at the stage of Inverse Pendulum phase. 
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Figure 1: Step Climbing Stages 

 

As shown in figure 1(c), the robotic assist wheelchair will impose a balancing 

mechanism to help the person onboard. The original project mechanism will be 

explained in next section. 

 

1.3. Wheelchair Mechanism 

In this section, the hardware mechanism proposed is to be discussed. The 

balancing mechanism is established by controlling the rear wheel rotation. Rear 

wheel drive system consists of DC motor, gearbox, chain and housing. The 

gear ratio is 772 making a reduction ration of 1/772.  
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Two sensors are implemented to give the required measurements. An optical 

encoder is mounted to detect the rotation of the rear wheel. A gyro sensor is 

put to measure the rate of inclination of the wheelchair body. The ‘control’ 

system consists of a personal computer, counter board, Analog-to-Digital 

converter and Digital-to-Analog converter. Figure 2 shows a schematic of the 

hardware system of the wheelchair. 

 

Figure 2: Hardware System of the Wheelchair 

 

The mechanism goes as follows: 

1) Gyro sensor detects the inclination velocity the wheelchair 
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2) Inclination velocity is put into the PC through Analog-to-Digital 

converter 

3) Inclination velocity is subtracted by a bias signal measured previously 

4) Inclination velocity is integrated to give the inclination angle of the 

wheelchair 

5) The error is computed by subtracting the desired value from the measure 

inclination 

6) The error signal is put into the controller 

7) A control input is produced and using Digital-to-Analog converter to 

send the current required to drive the DC motor… and so 

The sampling period used in the original work was 17 ms. 
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2. Dynamic Model Development 

In this big part of the report, a thorough discussion of the dynamic model of 

the wheelchair in inverse pendulum phase is established. Brief remarks about 

the dynamics of a general inverse pendulum system are explained. Then, the 

overall wheelchair dynamics is discussed. The mathematical model of the 

system is then discussed also. The State-Space model is then discussed in 

details. Discussion of the properties of the real system used in experiment are 

finally concluding this section of the report 

 

2.1. Inverse Pendulum Dynamics 

It is well known that Inverse Pendulum is a significant system that used widely 

in control research and applications especially in Academia. This system is 

investigated heavily because of its relation to other control theory studies of 

missile guidance, self-balancing transportation systems (as the system in hand) 

and lifting cranes. 
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Figure 3: Schematic of an Inverse Pendulum on a Cart 

An inverse pendulum system is known to be nonlinear. As shown in figure 3, 

an inverse pendulum on a cart is viewed. Obtaining the equation of motion of 

the system is done via the derivations from Lagrange’s Equations of motion. 

Originally, two differential equations describe the motion of inverse pendulum 

system. 

 𝑀 + 𝑚 𝑥 + 𝑚𝑙𝜃 cos 𝜃 − 𝑚𝑙𝜃 2 sin 𝜃 = 𝐹 

𝑚𝑙 −𝑔sin 𝜃 + 𝑥 cos 𝜃 + 𝑙𝜃  = 0 

As ‘M’, represents mass of the cart, ‘m’, being the mass of pendulum point, ‘x’ 

being the translational position of the system, ‘l’, representing length of the 

pendulum, ‘F’ is the input force and ‘’ is the angle of the pendulum with 
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respect to the vertical direction. As it is obvious the nonlinearity is on ‘’ from 

the existence of sine and cosine functions. 

 

2.2. Wheelchair Dynamics 

In this section, the overall wheelchair dynamics is discussed. Of course, 

wheelchair dynamics in hand is investigated during the inverse pendulum stage. 

Figure 4 shows an overview picture of the wheelchair dynamic model. 

 

Figure 4: Wheelchair Dynamics 
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This model in figure 4 can be projected to figure 3 of the inverse pendulum on 

a cart. As 𝑀𝑏 in figure 4 being the center-of-mass mass of the wheelchair body 

is projected as the point mass of the pendulum. And 𝜙 is the inclination angle 

of the pendulum. The translational motion of ‘x’ in figure 3 is here in figure 4 

done through the rotation of the rear wheel represented here by 𝜃. And r and 

𝑀𝑤  represent radius of the rear wheel and mass of rear wheels respectively.  It 

is assumed that the two rear wheels act as a one with no consideration of each 

wheel dynamics. So the ‘only’ impact of the wheelchair on an inverse pendulum 

system is that the translational motion is now coming from the motor-

controlled rear wheel rotation. 

 

The result of the above discussion is to form the complete equations of motion 

of the wheelchair nonlinear dynamic system. The two differential equations 

describing the motion is 

 𝑀𝑏𝐿
2 + 𝐽𝑏 + 𝐽𝑚𝐾𝑔

2 𝜙 +  𝑀𝑏𝑟𝐿cos 𝜙 − 𝐽𝑚𝐾𝑔
2 𝜃 + 𝐾𝑐𝑠 𝜙 − 𝜃  

− 𝑀𝑏𝑔𝐿 sin 𝜙 = −
𝐾𝑔𝐾𝑡

𝑅
𝑣                                                …     1  

 𝑀𝑏𝑟𝐿 cos 𝜙 − 𝐽𝑚 𝐾𝑔
2 𝜙 +   𝑀𝑏 + 𝑀𝑤  𝑟2 + 𝐽𝑤 + 𝐽𝑚 𝐾𝑔

2 𝜃 − 𝐾𝑐𝑠𝜙 

+  𝐾𝑐𝑠 + 𝐾𝑐𝑓  𝜃 − 𝑀𝑏𝑟𝐿 sin 𝜙 ⋅ 𝜙 2 =
𝐾𝑔𝐾𝑡

𝑅
𝑣              …     2  
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The parameters and variables involved in the equations, and will be used 

throughout the whole report, are defined as 

 

Table 1: Wheelchair Parameters & Variables 

𝜙 → Inclination angle of the wheelchair body [rad] 

𝜃 → Rotation angle of the rear wheels [rad] 

𝑣 → Input voltage of the DC motor [V] 

𝑅 → DC motor resistance [ohm] 

𝑀𝑏 → Total mass of the wheelchair body and person onboard [kg] 

𝑀𝑤 → Mass of the rear wheels [kg] 

𝐽𝑏 → Total moment of inertia of the wheelchair body and person [kg.m 2] 

𝐽𝑤 → Moment of inertia of the rear wheels [kg.m2] 

𝐿 → Length between wheelchair shaft & gravity center of wheelchair body [m] 

𝑟 → Radius of the rear wheels [m] 

𝐾𝑐𝑓 → Damping constant between floor and rear wheels [N.m/(rad/s)] 

𝐾𝑐𝑠 → Damping constant of the wheel shaft [N.m/(rad/s)] 

𝐾𝑡 → Torque constant of the DC motor [N.m/A] 

𝐾𝑔 → Gear ratio 
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2.3. Linearized Mathematical Model 

In this section, only the linearization process is done on the dynamic model to 

have it ready for analysis and design. 

 

As the goal is to have the inclination angle close to zero, the linearization goes 

by using these properties: 

sin 𝜙 ≈ 𝜙 

cos 𝜙 ≈ 1 

𝜙 2 ≈ 0 

So, by that, the final linearized mathematical model is 

 𝑀𝑏𝐿
2 + 𝐽𝑏 + 𝐽𝑚 𝐾𝑔

2 𝜙 +  𝑀𝑏𝑟𝐿 − 𝐽𝑚𝐾𝑔
2 𝜃 + 𝐾𝑐𝑠 𝜙 − 𝜃  − 𝑀𝑏𝑔𝐿𝜙

= −
𝐾𝑔𝐾𝑡

𝑅
𝑣                                                …    3  

 𝑀𝑏𝑟𝐿− 𝐽𝑚𝐾𝑔
2 𝜙 +   𝑀𝑏 + 𝑀𝑤  𝑟2 + 𝐽𝑤 + 𝐽𝑚 𝐾𝑔

2 𝜃 − 𝐾𝑐𝑠𝜙 

+  𝐾𝑐𝑠 + 𝐾𝑐𝑓  𝜃 =
𝐾𝑔𝐾𝑡

𝑅
𝑣                     …     4  
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2.4. State-Space Model 

This section is will present the complete state-space model of the system. From 

the linearized equations of motion of (3) and (4) in previous section, the 

complete State-Space Model of the Robotic Wheelchair during Inverse 

Pendulum Control is 

𝑥 = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 

With the state vector of, 

𝑥 =  

𝜙
𝜃
𝜙 

𝜃 

  

With, 

𝐴 =  

0 0 1 0
0 0 1 0
𝐴1 0 −𝐴2 𝐴3

−𝐴4 0 𝐴5 −𝐴6

       ,     𝐵 =  

0
0

−𝐵1

𝐵2

  

As, 
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𝐴1 =
𝑎4𝑏1

𝑎1𝑏1 − 𝑎2
2    ,   𝐴2 =

𝑎2𝑎3 + 𝑎3𝑏1

𝑎1𝑏1 − 𝑎2
2    ,

𝐴3 =
𝑎2𝑏2 + 𝑎3𝑏1

𝑎1𝑏1 − 𝑎2
2    ,     𝐴4 =

𝑎2𝑎4

𝑎1𝑏1 − 𝑎2
2    ,

𝐴5 =
𝑎2𝑎3 + 𝑎1𝑎3

𝑎1𝑏1 − 𝑎2
2    , 𝐴6 =

𝑎2𝑎3 + 𝑎1𝑏2

𝑎1𝑏1 − 𝑎2
2    ,

𝐵1 =
𝑎2𝑎5 + 𝑎5𝑏1

𝑎1𝑏1 − 𝑎2
2    , 𝐵2 =

𝑎2𝑎5 + 𝑎1𝑎5

𝑎1𝑏1 − 𝑎2
2    ,    

With, 

𝑎1 = 𝑀𝑏𝐿
2 + 𝐽𝑏 + 𝐽𝑚 𝐾𝑔

2     ,    𝑎2 = 𝑀𝑏𝑟𝐿 − 𝐽𝑚 𝐾𝑔
2  

𝑎3 = 𝐾𝑐𝑠    ,    𝑎4 = 𝑀𝑏𝑔𝐿     ,     𝑎5 =
𝐾𝑔𝐾𝑡

𝑅
 

𝑏1 =  𝑀𝑏 + 𝑀𝑤  𝑟2 + 𝐽𝑤 + 𝐽𝑚 𝐾𝑔
2      ,     𝑏2 = 𝐾𝑐𝑠 + 𝐾𝑐𝑓  

Remark: in (Takahashi, et al., 2000) paper, the authors made a typing error (typo) for the 

value of 𝐴5 as first 𝑎3  in the numerator is miss-typed as 𝑏3 . 

Putting in mind that the measured outputs are optical encoder output (𝜙 −

𝜃)  and the output of the gyro sensor 𝜙 . So, this makes 

𝐶 =  1 −1 0 0
0 0 1 0

  

And system input 𝑢 = 𝑣 the DC motor input voltage 
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2.5. System Configuration & Test Simulations 

In this brief section, just values of parameters of the system will be presented 

and some simulations to give an overview picture about the situation in hand. 

Parameters values of the system that will be used throughout the system is 

presented in the following table 2. 

Table 2: System Parameters Values 

R 0.84 [ohm] 

Mw 6.52 [kg] 

L 0.29 [m] 

Kt 0.0239 [N.m/A] 

Jw 0.11 [kg.m2] 

Kcf 8.78 [N.m/(rad/sec)] 

Kcs 12.3 [N.m/(rad/sec)] 

Mb 84.16 [kg] 

Jb 29.3 [kg.m2] 

r 0.305 [m] 

Kg 772 
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Jm 7.0x10-6 [kg.m2] 

 

So, because no control is yet designed, performing an uncontrolled-system 

simulation is done here. Here and throughout the whole report, all computer 

simulations and codes are done under MATLAB R2007b environment.  

So, the numeric full state-space model is 

 

𝑥 =  

0 0 1 0
0 0 0 1

6.0236 0 −0.3895 0.4464
−1.5498 0 1.0674 −1.7724

 𝑥 +  

0
0

−0.6955
1.9061

 𝑢  

𝑦 =  1 −1 0 0
0 0 1 0

  𝑥  

So using an initial condition of 

𝑥 0 =  

−12°
0
0
0

 =  

−0.21 
0
0
0

  (𝑟𝑎𝑑) 

 

So a test simulation of the autonomous system: 



 
18 

𝑥 = 𝐴𝑥 

is showed in figure 5. 

 

Figure 5: State Simulation Results for uncontrolled system 

This behavior of the states is expected. The system is obvious to be unstable. 

The conclusion is coming from the nature of the mechanical system involved. 

It is expected for the machine to lose balance very fast. And by scientific 

means, the autonomous system is found to be unstable due to the eigenvalues 

of the system are 
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         0,   2.2871,   -2.9879   &   -1.4611 

with two nonnegative eigenvalues appearing. 

3. Optimal Control Design & Results 

This would be the main part of the report. This section will discuss in detail 

different control designs. The different control strategies that will be discussed 

here include: 

1) Linear Quadratic Regulator (LQR) design 

2) Linear Quadratic Gaussian Regulator (LQG) design 

3) H2 Control design 

4) H∞ Control design 

Every design will be discussed in detail in using the Robotic Wheelchair state-

space model which explained in earlier sections of the report. Each design will 

be presented along with all the simulation results and comments about the 

results produced. 

 

3.1. Linear Quadratic Regulator (LQR) Design 

In this section, the LQR design approach will be used. Before continuing with 

the control design, some assumptions must be set. Here, we assume the full 
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availability of the states of the system to have them fed back to the controller, 

which is not the case. The only available physical outputs of the system are the 

gyro sensor output and the encoder output. Of course the straightforward 

assumption is that the LQR design does not include any external disturbances 

affecting the states of the system. 

 

Establishing the LQR cost function of, 

𝐽 =  𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 𝑑𝑡

∞

0

 

𝑠. 𝑡.    𝑥 = 𝐴𝑥 + 𝐵𝑢 

 

With (as defined in earlier sections of the report), 

𝐴 =  

0 0 1 0
0 0 0 1

6.0236 0 −0.3895 0.4464
−1.5498 0 1.0674 −1.7724

       &   𝐵 =  

0
0

−0.6955
1.9061

  

The optimal designs established are obtained by setting different weights on the 

states and input.  

Note: all MATLAB codes can be found in Appendix or the included CD. 
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 The first case is with putting unity weights on the states and the input. 

The results obtained are shown in figure 6. 

 

Figure 6: LQR case 1 results 
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This trivial design gives us fancy results. As our goal is to control and regulate 

the inclination of the wheelchair, the settling time found to be relatively 

acceptable (~3 sec). An overshoot is observed in all states and input.  

 Another case is to put only weight on inclination angle or only on wheel 

rotation. Both cases are shown in figure 7. 
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Figure 7: LQR weight on 'phi' or on 'theta' 

In figure 7, The solid line corresponds to unit weight on the inclination only. 

The light (dotted) line corresponds to a unit weight on wheel rotation only. 

Interestingly, sole weight on the inclination angle made a better performance. 
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This is expected because wheels behavior left freely. There are almost no 

overshoot on input and inclination in the case with weight only on inclination. 

 Another case of LQR is just to put weights on both inclination and 

wheel rotation and observe change when increasing. The result is 

depicted in figure 8. 

 

Figure 8: LQR weights on both inclination & wheel rotation 
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In figure 8, the solid line corresponds to a unit weight on both inclination angle 

and wheel rotation. Dashed line corresponds to an increase in weight on both 

by 10. Decrease in settling time is viewed by increasing the weight, but with 

increase in the overshoots of the states. Of course slight increase on overshoot 

of the input is resulted after increasing the weight. 

 

3.2. Linear Quadratic Gaussian Regulator (LQG) 

Design 

 

In this section, the more practical design strategy is used. Linear Quadratic 

Gaussian Regulator (LQG) method depends on the state estimation through 

the information of the input and output of the system. This estimation and 

regulation is also used to eliminate the effects of noise or external disturbances 

on the states of the problem.  

As the system is expected to receive noise, the state-space model here is going 

to be modified to introduce the noise input along with the original input. So, 

the state-space model will be formed as 

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑤𝑤 
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As ‘w’ represents the external noise to the states. 

Analyzing the system of the robotic wheelchair and state variables, the value of 

𝐵𝑤  is left to be investigated. The value will express how noise input will affect 

the states. Considering the overall mechanical system of the robotic wheelchair 

in inverse pendulum stage, largest effect of the noise will be on the inclination 

(balance) of the system. A slight smaller effect is translated into the inclination 

velocity from noise to the gyro sensor. But much smaller disturbance would be 

observed on both wheel rotation and wheel velocity states. 

So, a predicted values can be used are 

𝐵𝑤 =  

0.09
0.025
0.075
0.05

  

Values are chosen to be somehow small because of expecting a unit noise input 

will affect the states which are having the small units of radians. 

Before showing the results of the different designs of LQG, a brief explanation 

of how the control procedure will go. State estimation is required because the 

lack of full state measuring. The only available are the output. State estimation 

is done through an observer system. A usual and well renowned estimation 

method is the Kalman Filtering. 
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Basically, the State-Estimator or the Kalman Filter is of the form of 

𝑥 𝑒 = 𝐴𝑥𝑒 + 𝐵𝑢 + 𝐿 𝑦 − 𝐶𝑥𝑒  

 
𝑦𝑒

𝑥𝑒
 =  

𝐶
𝐼
 𝑥𝑒  

With 𝑥𝑒  corresponds to the estimated states. And 𝐿 is the estimator gain 

calculated. For the specific system in hand, using a unity noise covariance, the 

state estimator system is 

𝑥 𝑒 =  

−0.6822 0.6822 −0.7367 0
−0.05607 0.05607 −0.178 1

4.465 1.559 −4.358 0.4464
−1.7 0.15 0.6861 −1.772

 𝑥𝑒

+  

0 0.6822 1.737
0 0.05607 0.178

−0.6955 1.559 3.968
1.906 0.15 0.3813

  

𝑣
𝜃 − 𝜙

𝜙 
  

As it is obvious, estimator inputs are the system input, optical encoder output 

and gyro sensor output.  

By the separation principle, an independent computation of the feedback 

control gain is done using the information of the original system before 

estimation. Several cases are tested using LQG design. Different weights on 

states and input are tested and investigated.  
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 The trivial case is to try the unity weights on the states and input. 

The result of this design can be viewed in figure 9. 

 

Figure 9: LQG with unity weights 

The main observation is the relatively high settling time. This is expected due 

to the introduction of the estimator system. It is observed that wheel rotation 
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takes very long time to reach zero. A relatively unwanted overshoots are 

observed, specially the overshoot of the inclination.  

 Another case is to put unity weights on only the inclination or only on 

the wheel rotation. 

The result of this is shown in figure 10. 

 

Figure 10: LQG 2nd case 



 
30 

It is clearly obvious that big difference between the two cases. The solid line 

corresponds to weight on inclination. The dashed line corresponds to weight 

on wheel rotation. When having weight on inclination only, settling time 

increases, but overshoots are ‘significantly’ decreased. Faster response is found 

by the weight on the wheel rotation. But in general, both performances are 

better than putting unity weights on all states as compared to figure 9. 

 

 Another case is to put weight on both states. 

Actually, there is no need to put the result because it is almost the same as the 

performance attained by putting unity weights on all states as in figure 9. 

 

 Another case is to observe the change of weight on the control input. 

The design is obtained by putting 0.1 and 10 as weights on the control input. 

The result is shown in figure 11. 
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Figure 11: LQG different weights on input 

 

Strangely, putting less weight of 0.1 (solid) on the input gives the ‘relative’ 

better performance than larger weight of 10 (dashed). Big difference is 

observed on wheel rotation. Control input almost not changed. But in general, 

putting more weight on input gives slower response. 
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3.3. H2 Control 

In this part, the H2 norm is to be minimized through the approach of Linear 

Matrix Inequalities (LMI). With no constraints on input or states, the result of 

the minimizing problem is shown in figure 12. 

An evaluation output is set to be 𝑧 =  1 0 0 0 𝑥 

 

Figure 12: H2 control 
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The minimizing problem gives extraordinarily results. You can not accept the 

four states performance with the too huge impulse effect of the input. H2 

control proved that at least for this system is so not practical. The minimum 

H2 norm value found is 0.5077. 

The problem changed to have a constraint on the minimization of the H2 

norm. However, almost identical results are produced as in figure 12. 

 

3.4. H∞ Control 

In this part of the report, the H∞ norm is minimized. The minimization is done 

by the LMI approach. Having no constraints on the minimization, the result of 

the minimization gives also unpractical values like H2 problem. The result of 

the minimization gives a optimal H∞ norm value of 0.018. 

But different than H2 problem, putting constraint on the minimization of 

 ∙ ∞ < 𝛾 

With 𝛾 = 0.5 gives a result as shown in figure 13. 
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Figure 13: H-infinity Control 

 

This minimization problem introduces an oscillatory behavior on the states. 

Relatively high input values are resulting also. 
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3.5. LQR with Integral Action 

In this part, an integral action is added to the original LQR design. 

So, with, 

𝐴𝑤 =  
𝐴 ⋮ 0
⋯ ⋯
𝐶 ⋮ 0

  , 𝐵𝑤 =  
𝐵
⋯
0

   

𝑄 =  
𝐶𝑇𝐶 ⋮ 0
⋯ ⋯
0 ⋮ 𝜎𝐼

  , 𝑅 = 𝜌𝐼 

 

With 𝜌 = 0.01 and 𝜎 = 1  

The result of the control is shown in figure 14. 
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Figure 14: LQR with Integral Action 

The integral action improved the overshoot problem significantly. Slightly big 

initial input is observed also. 

3.6. Control Design Robustness 

This very small part is only to observe the robustness of the control designs 

obtained. Here, only the case of LQG will be tested with changes in model 



 
37 

parameters. The same design (i.e. same feedback gains and estimation) of the 

LQG design obtained with unity weights on all states and input. 

First case with increase in rear wheel radius of 25% is shown in figure 15. 

 

Figure 15: LQG with change in wheel radius 
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Another more logical uncertainty can be coming from the person onboard 

changing the mass, changing the inertia or change in the distance between the 

center of mass and the wheel shaft. So, in figure 16, an increase of 25% is put 

onto the distance, total mass and total moment of inertia. 

 

Figure 16: LQG with different uncertainties 
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The design can be evaluated according to these results as relative good because 

of the introduction of oscillations. But as long as stability is maintained, the 

design is acceptable. 

 

4. Conclusion & Future Improvements 

This is the final section of the report. It is observed from the thorough study 

established in this report that Optimal Control design gives powerful tool to 

control real-life applications. 

 

From the designs investigated throughout the report, LQG appeared to be the 

best design in terms of the practicality of the design. The application of the 

LQG design in the real system will give good results according to the 

considerations involved in the design of the controller. However, choosing the 

weights of the design depends on how the user wants the system to behave. 

For the Robotic Wheelchair System, attention must be taken upon the 

inclination angle of the wheelchair while in inverse pendulum stage. 
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Future improvement could take care of the affectivity of the controllers 

obtained earlier. A possible study could be carried out for developing a 

derivative action added to the optimal control designs. Improvements of the 

robustness of the control system are required also. 

 

Another issue is to design a control system with high performance to be able to 

work for large inclinations inside the nonlinear effect of the system. Digital 

control study could bring more practical results for the system. 

 

It is been good enjoyable work for doing the project and involving many 

aspects to control the system and comment on the results. 
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6. Appendix 

This appendix will contain the MATLAB codes used. All codes is used under 

MATLAB R2007b. 

List of files: 

1) LQR design: proj_lqr.m 

2) LQG design: proj_kalman.m 

3) H2 design: proj_H2.m 

4) H-infinity: proj_H8.m 

5) Model Uncertainty: proj_robust.m 

6) LQR with Integral Action: proj_LQR_PI.m 

All files are included in the CD attached with the report. 

1) LQR design: proj_lqr.m 

%term 071 
%SE 514 - Optimal Control 
%by Mohammad Shahab, King Fahd University of Petroleum & Minerals 

  
%21 JAN 2008 
  

% LQR 

 
clc 
clear all 

  
%%%%%%%%%%%%%% Model Parameters 

  

  
Re=0.84;    %resistance 
Mw=6.52;    %wheels mass 
L=0.29;     %length between wheels shaft and center of mass 
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Kt=0.0239;   %torque constant of DC motor 
Jw=0.11;    %intertia of wheels 
Kcf=8.78;   %damping between floor and wheels 
Kcs=12.3;   %damping of wheel shaft 
Mb=84.16;   %mass of wheelchair and person 
Jb=29.3;    %inetria of body 
rad=0.305;  %radius of wheels 
Kg=772;     %gear ratio 
Jm=7.0*10^-6;   %inertia of DC motor 
g=9.8;      %gravity 

  
%%%%%%%%%% 

  
a1=(Mb*L^2)+Jb+(Kg^2)*Jm; 
a2=Mb*rad*L-Jm*Kg^2; 
a3=Kcs; 
a4=Mb*g*L; 
a5=(Kg*Kt)/Re; 
b1=(Mb+Mw)*rad^2+Jw+Jm*Kg^2; 
b2=Kcs+Kcf; 

  
%%%%%%%%%% 

  
A1=a4*b1/(a1*b1-a2^2); 

A2=(a2*a3+a3*b1)/(a1*b1-a2^2); 
A3=(a2*b2+a3*b1)/(a1*b1-a2^2); 
A4=a2*a4/(a1*b1-a2^2); 
A5=(a2*a3+a1*a3)/(a1*b1-a2^2); 
A6=(a2*a3+a1*b2)/(a1*b1-a2^2); 
B1=(a2*a5+a5*b1)/(a1*b1-a2^2); 
B2=(a2*a5+a1*a5)/(a1*b1-a2^2); 

  
%%%%%%%%%% State Space Model 

  
A=[0 0 1 0;0 0 0 1;A1 0 -A2 A3;-A4 0 A5 -A6]; 

  
B=[0;0;-B1;B2]; 

  
C=[1 -1 0 0;0 0 1 0]; 

  
D=[0;0]; 

  

sys1=ss(A,B,C,D); 

  
%%%%%%%%%% Initial Conditions 

  
phi0=-0.21;     %initial inclination 
th0=0;      %initial wheel rotation 
phid0=0;    %initial inclination velocity 
thd0=0;     %initial wheel velocity 

  

x0=[phi0;th0;phid0;thd0]; 

  
%%%%%%%%%%%% Weighting Matrices 
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R=10*eye(1); 
Q=1*eye(4); 
Q2=C'*(1*eye(2))*C; 
Q3=1*[1 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0]; 
n=[0;0;0;0]; 

  
%%%%%%%%%%%%  LQR design 

  
[K1,P1,P2,P3]=lqrc(A,B,[Q n;n' R]); 

  
sys_c=ss(A-B*K1,[0;0;0;0],C,D); 

  
%%%%%%%%%%%%% Simulation 

  
[y1,t1,x1]=initial(sys_c,x0); 
ut=-K1*x1'; %control input 

  
%%%%%%%%%%%% Simulation Plots 

  
subplot(3,2,1) 
plot(t1,x1(:,1),'-') 
title('Inclination Angle') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,2) 
plot(t1,x1(:,2),'-') 
title('Rotation Angle') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,3) 
plot(t1,x1(:,3),'-') 
title('Incliantion Velocity') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,4) 
plot(t1,x1(:,4),'-') 
title('Rotation Velocity') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,5) 
plot(t1,ut,'-') 
title('Input Voltage') 
xlabel('time (sec)') 
grid 
hold 
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2) LQG design: proj_kalman.m 

%term 071 
%SE 514 - Optimal Control 

%by Mohammad Shahab, King Fahd University of Petroleum & Minerals 
%21 JAN 2008 
%LQG 
clc 
clear 

  
%%%%%%%%%%%%%% Model Parameters 

  
Re=0.84;    %resistance 

Mw=6.52;    %wheels mass 
L=0.29;     %length between wheels shaft and center of mass 
Kt=0.0239;   %torque constant of DC motor 
Jw=0.11;    %intertia of wheels 
Kcf=8.78;   %damping between floor and wheels 
Kcs=12.3;   %damping of wheel shaft 
Mb=84.16;   %mass of wheelchair and person 
Jb=29.3;    %inetria of body 
rad=0.305;  %radius of wheels 
Kg=772;     %gear ratio 
Jm=7.0*10^-6;   %inertia of DC motor 
g=9.8;      %gravity 

  
%%%%%%%%%% 

  
a1=(Mb*L^2)+Jb+(Kg^2)*Jm; 
a2=Mb*rad*L-Jm*Kg^2; 
a3=Kcs; 
a4=Mb*g*L; 
a5=(Kg*Kt)/Re; 
b1=(Mb+Mw)*rad^2+Jw+Jm*Kg^2; 
b2=Kcs+Kcf; 

  
%%%%%%%%%% 

  
A1=a4*b1/(a1*b1-a2^2); 
A2=(a2*a3+a3*b1)/(a1*b1-a2^2); 
A3=(a2*b2+a3*b1)/(a1*b1-a2^2); 
A4=a2*a4/(a1*b1-a2^2); 
A5=(a2*a3+a1*a3)/(a1*b1-a2^2); 
A6=(a2*a3+a1*b2)/(a1*b1-a2^2); 
B1=(a2*a5+a5*b1)/(a1*b1-a2^2); 
B2=(a2*a5+a1*a5)/(a1*b1-a2^2); 

  
%%%%%%%%%%  State Space Model 

  
A=[0 0 1 0;0 0 0 1;A1 0 -A2 A3;-A4 0 A5 -A6]; 

  
B=[0;0;-B1;B2]; 

  
C=[1 -1 0 0;0 0 1 0]; 
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D=[0;0]; 

  
sys1=ss(A,B,C,D); 
Cout=[1 0 0 0]; 
%%%%%%%%%% 

  
phi0=-0.21;     %initial inclination 
th0=0;      %initial wheel rotation 
phid0=0;    %initial inclination velocity 
thd0=0;     %initial wheel velocity 

  
x0=[phi0;th0;phid0;thd0]; 

  
%%%%%%%%%%%% Initial Conditions 

  
R=1*eye(1); 
Q=eye(4); 
Q2=1*Cout'*Cout; 
Q3=1*[0.1 0 0 0;0 0 0 0;0 0 1 0;0 0 0 0]; 
n=[0;0;0;0]; 

  
Bw=[0.09;0.025;0.075;.05]; 

  
[K1,P1,P2,P3]=lqrc(A,B,[Q3 n;n' R]); 

  
%%%%%%%% Kalman design  

  
sys2=ss(A,[B Bw],C,[D 0*C*Bw]); 

  
[sys_e,Le,Pe]=kalman(sys2,1,1*eye(2)); 

  

Ke=K1; 

  
sys_reg=lqgreg(sys_e,Ke); 

  
sys_c=feedback(sys2,sys_reg,1,[1 2],+1); 

  
%%%%%%%%%%%%% Simulation 
dt = 0.01; 
t = 0:dt:30;   % time samples 

wx = wgn(length(t),1,1); 

  
[y1,t1,x1]=lsim(sys_c,[0*wx 0.25*wx],t,[x0;0;0;0;0]); 
ut=-Ke*x1(:,5:8)'; 
current=(ut/Re)'; 

  
%%%%%%%%%%%% Simulation Plots 
subplot(3,2,1) 
plot(t1,x1(:,1),'-') 

title('Inclination Angle') 
xlabel('time (sec)') 
grid 
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hold 
subplot(3,2,2) 
plot(t1,x1(:,2),'-') 
title('Rotation Angle') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,3) 
plot(t1,x1(:,3),'-') 
title('Incliantion Velocity') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,4) 
plot(t1,x1(:,4),'-') 
title('Rotation Velocity') 
xlabel('time (sec)') 
grid 
hold 
subplot(3,2,5) 
plot(t1,current,'-') 
title('Current Input (A)') 
xlabel('time (sec)') 
grid 
hold 


