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OUTLINE

 References

 Introduction

 Bayesian Filtering

 Particle Filters

 Monte-Carlo Localization

 Visually…

 The Use of Negative information

 Localization Architecture in GT

 What Next?
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INTRODUCTION

M
A

Y
 2

0
0
8



MOTIVATION

 Where am I?
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LOCALIZATION PROBLEM

 “Using sensory information to locate the robot

in its environment is the most fundamental

problem to providing a mobile robot with

autonomous capabilities.” [Cox ’91]

 Given
 Map of the environment: Soccer Field

 Sequence of percepts & actions: Camera Frames, 

Odometry, etc

 Wanted
 Estimate of the robot’s state (pose):
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PROBABILISTIC STATE ESTIMATION

Advantages
 Can accommodate inaccurate models

 Can accommodate imperfect sensors

 Robust in real-world applications

 Best known approach to many hard robotics problems

Disadvantages
 Computationally demanding

 False assumptions

 Approximate!
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BAYESIAN FILTER
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BAYESIAN FILTERS

 Bayes’ Rule

 with background knowledge

 Total Probability
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BAYESIAN FILTERS

 Let

 x(t) be pose of robot at time instant t

 o(t) be robot observation (sensor information)

 a(t) be robot action (odometry)

 The Idea in Bayesian Filtering is
 to find Probability Density  (distribution) of the Belief 
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BAYESIAN FILTERS

 So, by Bayes Rule

 Markov Assumption: 

 Past & Future data are independent if current state known
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BAYESIAN FILTERS

 Denominator is not a function of x(t), then it is 

replaced with normalization constant

 With Law of Total Probability for rightmost term in 

numerator; and further simplifications

 We get the Recursive Equation
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BAYESIAN FILTERS

 So we need for any Bayesian Estimation problem:

1. Initial Belief distribution,

2. Next State Probabilities,

3. Observation Likelihood,   
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PARTICLE FILTER
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PARTICLE FILTER

 The Belief is modeled as the discrete distribution

 as m is the number of particles

 hypothetical state estimates

 weights reflecting a “confidence” in how well is the 

particle

M
A

Y
 2

0
0
8



PARTICLE FILTER

 Estimation of non-Gaussian, nonlinear processes

 It is also called:

 Monte Carlo filter, 

 Survival of the fittest, 

 Condensation, 

 Bootstrap filter, 
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MONTE-CARLO LOCALIZATION

Framework

Observation Model Motion Model
Previous Belief
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MONTE-CARLO LOCALIZATION
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MONTE-CARLO LOCALIZATION

 Algorithm

1. Using previous samples, project ahead by generating a new 
samples by the motion model

2. Reweight each sample based upon the new sensor information

 One approach is to compute                                             for each i

3. Normalize the weight factors for all m particles

4. Maybe resample or not! And go to step 1

 The normalized weight defines the potential distribution of state
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MONTE-CARLO LOCALIZATION

Algorithm

Step 2&3 for all m Step 1 for all m after 

Step 4
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MONTE-CARLO LOCALIZATION

 State Estimation, i.e. Pose Calculation

Mean

 particle with the highest weight

 find the cell (particle subset) with the highest total

weight, and calculate the mean over this particle subset.

GT2005

 Most crucial thing about MCL is the calculation of

weights

 Other alternatives can be imagined
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MONTE-CARLO LOCALIZATION

 Advantages to using particle filters (MCL)

 Able to model non-linear system dynamics and sensor models

 No Gaussian noise model assumptions

 In practice, performs well in the presence of large amounts of 

noise and assumption violations (e.g. Markov assumption, 

weighting model…)

 Simple implementation

 Disadvantages

 Higher computational complexity

 Computational complexity increases exponentially compared 

with increases in state dimension

 In some applications, the filter is more likely to diverge with more 

accurate measurements!!!!
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… VISUALLY
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ONE – DIMENSIONAL ILLUSTRATION OF BAYES

FILTER
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ONE – DIMENSIONAL ILLUSTRATION OF BAYES
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ONE – DIMENSIONAL ILLUSTRATION OF BAYES
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ONE – DIMENSIONAL ILLUSTRATION OF BAYES

FILTER
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APPLYING PARTICLE FILTERS TO LOCATION

ESTIMATION
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APPLYING PARTICLE FILTERS TO LOCATION
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APPLYING PARTICLE FILTERS TO LOCATION
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APPLYING PARTICLE FILTERS TO LOCATION
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APPLYING PARTICLE FILTERS TO LOCATION

ESTIMATION
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NEGATIVE INFORMATION

M
A

Y
 2

0
0
8



MAKING USE OF NEGATIVE INFORMATION
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MAKING USE OF NEGATIVE INFORMATION
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MAKING USE OF NEGATIVE INFORMATION
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MAKING USE OF NEGATIVE INFORMATION
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MATHEMATICAL MODELING
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 t : Time

l: Landmark

z: Observation

u: action

s: State

*: negative information

r: sensing range

o: possible occlusion
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ALGORITHM

if (landmark l detected) then

else

end if
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EXPERIMENTS

 Particle Distribution

 100 Particles (MCL) 

 2000 Particles to get better representation.

 Not Using negative Information VS using negative 

information.

 Entropy H (information theoretical quality measure 

of the positon estimate.

      
ts

tttp sBelsBelsH log
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RESULTS
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RESULTS
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RESULTS
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GERMAN TEAM LOCALIZATION

ARCHITECTURE
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GERMAN TEAM SELF-LOCALIZATION CLASSES
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COGNITION
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WHAT NEXT?

 Monte Carlo is bad for accurate sensors??!

 There are different types of localization techniques: 

Kalman, Multihypothesis tracking, Grid, Topology, in 

addition to particle… 

 What is the difference between them? And which one is 

better?

 All These issues will be discussed with a lot more in 

our next presentation (next week) Inshallah.
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FUTURE
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GUIDENCE
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HOLDING OUR BAGS
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MEDICINE
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DANCING…
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UNDERSTAND AND FEAL

M
A

Y
 2

0
0
8



PLAY WITH
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OR MAYBE…
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QUESTIONS
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