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LOCALIZATION PROBLEM

“Using sensory information to locate the robot
In its environment i1s the most fundamental
problem to providing a mobile robot with
autonomous capabilities.”  [Cox 91]

Given
Map of the environment: Soccer Field

Sequence of percepts & actions: Camera Frames,
Odometry, etc

Wanted N
Estimate of the robot’s state (pose): Pose — [y
7}
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PROBABILISTIC STATE ESTIMATION

Advantages

o Can accommodate inaccurate models

o Can accommodate imperfect sensors

o Robust in real-world applications

o Best known approach to many hard robotics problems

Disadvantages

o Computationally demanding
o False assumptions
o Approximate!
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® BAYESIAN FILTER
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BAYESIAN FILTERS

Bayes’ Rule
P(ylx) - P(x) __ Likelihood -Prior

P(l"|y) - P(y) Evidence
with background knowledge

P(y|x,z)P(x|z)
P(x|y,z) = 5
Total Probability (v12)

P(x)= ) P(xl2)P(2)
Vz
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BAYESIAN FILTERS

Let
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X(t)be pose of robot at time instant ¢
o(t) be robot observation (sensor information)
a(t)be robot action (odometry)

The ldea in Bayesian Filtering is
to find Probability Density (distribution) of the Belief

Bel(x (1)) = P (x(D)]o(®), a(t — 1),0(t — 1), a(t — 2), .., 0(0))

P(ylx,z) - P(x|z)




BAYESIAN FILTERS

So, by Bayes Rule
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Po(t)|x(t),a(t —1),..)  P(x(t)|alt —1),...)

Bel(x(t)) = P(o(D]alt—1). )

Markov Assumption:
Past & Future data are independent if current state knownn

Plo(t)|x(t)) - P(x(t)|a(t —1),...)
P(o(t)|a(t —1),...)

BEE(x(t)) —

P(ylx,z) - P(x|z)
P(y|z)

P(xly,z) =



BAYESIAN FILTERS

~ P(o(®)[x(t)) - P(x(t)|al(t —1),...)
Bel(x(t)) = POl — 1), )

Denominator is not a function of x(t), then it is
replaced with normalization constant

With Law of Total Probability for rightmost term in
numerator; and further simplifications
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We get the Recursive Equation

Bel(x(t)) = P (o () |x(t)) Z P(x(8)|x(t — 1),a(t — 1))Bel(x(t — 1))

Yxi(t—1)

P(ylx,z) - P(x|z)
P(y|z)

P(xly,z) =



BAYESIAN FILTERS

Bel(x(2)) =P (o(8)|x(1)) 2 P(x(8)]x(t — 1),a(t — 1))Bel(x(t —2))

Yx(t—1)

So we need for any Bayesian Estimation problem:
Initial Belief distribution,
Next State Probabilities,  pqi(x(0))
Observation Likelihood,  P(x(t)|x(t — 1), a(t — 1))

P(o(t)|x(t))

P(ylx,z) ’ P(X|Z)
P(y|z)

P(xly,z) =



® PARTICLE FILTER
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PARTICLE FILTER

Bel(x(2)) =P (o(8)|x(1)) 2 P(x(8)]x(t — 1),a(t — 1))Bel(x(t —2))

Yx(t—1)

The Belief is modeled as the discrete distribution

Bel(x) = {x;, w;}

i=1,..,m as m is the number of particles
Xi hypothetical state estimates
Wi weights reflecting a “confidence” in how well is the
particle

P(ylx,z) ’ P(X|Z)
P(y|z)

P(xly,z) =



PARTICLE FILTER

Estimation of non-Gaussian, nonlinear processes
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It is also called:
Monte Carlo filter,
Survival of the fittest,
Condensation,
Bootstrap filter,

P(ylx,z) - P(x|z)
P(y|z)

P(xly,z) =



MONTE-CARLO LOCALIZATION
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Framework

Bel(x(t) = ?}P(ﬂ(tﬂx(tjjz P(x(t)|x(t — 1),a(t — 1)) Bel(x(t — 1))

s

_ Previous Belief
Observation Model Motion Model



‘ MONTE-CARLO LOCALIZATION

800¢ AVIN



MONTE-CARLO LOCALIZATION

Algorithm

Using previous samples, project ahead by generating a new
samples by the motion model

Reweight each sample based upon the new sensor information
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One approach is to compute Wi = P(o(D)[x;(t))  foreach s

Normalize the weight factors for all 7 particles
Maybe resample or not! And go to step 1

The normalized weight defines the potential distribution of state



MONTE-CARLO LOCALIZATION

Algorithm
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Bel(x(t) =|nP(o(1)|x(1))

/

Step 2&3 for all m

Z P(x(0)|x(t — 1),a(t — 1))Bel(x(t — 1))}

\

Step 1 for all m after
Step 4




MONTE-CARLO LOCALIZATION

State Estimation, i.e. Pose Calculation

Mean
particle with the highest weight

find the cell (particle subset) with the highest total
weight, and calculate the mean over this particle subset.
GT2005

Most crucial thing about MCL is the calculation of
weights

Other alternatives can be imagined
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MONTE-CARLO LOCALIZATION

Advantages to using particle filters (MCL)
Able to model non-linear system dynamics and sensor models
No Gaussian noise model assumptions

In practice, performs well in the presence of large amounts of
noise and assumption violations (e.g. Markov assumption,
weighting model...)

Simple implementation

Disadvantages
Higher computational complexity

Computational complexity increases exponentially compared
with increases in state dimension

In some applications, the filter is more likely to diverge with more
accurate measurements!!!!
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ONE — DIMENSIONAL ILLUSTRATION OF BAYES
FILTER
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ONE — DIMENSIONAL ILLUSTRATION OF BAYES
FILTER
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ONE — DIMENSIONAL ILLUSTRATION OF BAYES
FILTER
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ONE — DIMENSIONAL ILLUSTRATION OF BAYES
FILTER
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ONE — DIMENSIONAL ILLUSTRATION OF BAYES
FILTER
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APPLYING PARTICLE FILTERS TO LOCATION
ESTIMATION
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APPLYING PARTICLE FILTERS TO LOCATION
ESTIMATION
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APPLYING PARTICLE FILTERS TO LOCATION
ESTIMATION
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APPLYING PARTICLE FILTERS TO LOCATION
ESTIMATION
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APPLYING PARTICLE FILTERS TO LOCATION
ESTIMATION
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NEGATIVE INFORMATION




MAKING USE OF NEGATIVE INFORMATION
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Fig. la. (t = tg) Ilustration of a robot localizing in an offi ce hallway.
The robot has a sensor to detect doors. At the beginning, the robot does not
know its position in the hallway (uniform belief distribution Bel*(s¢)). At
this time, no sensing of the world takes place.




MAKING USE OF NEGATIVE INFORMATION
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Fig. 1b. (t = t1) The robot has moved down the hallway and now senses
a door p(z¢|s¢) which results in the shown belief Bel*(st). It has two
peaks since the robot could be standing in front of either door. The previous

distribution is illustrated by the dashed line. ‘




MAKING USE OF NEGATIVE INFORMATION
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Fig. Ic. (¢t = t3) The robot moves on. There are no doors nearby so the
“door sensor” does not sense a door. The sensor update distribution is shown
in p(z;|s¢). This negative information is of negligible use at this position: it
does not help differentiate between the peaks.




MAKING USE OF NEGATIVE INFORMATION

T

b p(z,¥s)
s
| W e L
4 Bel*(s,)
' s
A Bel(s,) negative info. used
. / \ P . . —'/, \\\ s

negative info. not used

Fig. 1d. (¢t = t4) The robot moves on and the door sensor still does not
sense a door. Bel™(s¢) shows the belief if negative information is taken into
account, whereas Bel(s:) shows the belief without using negative information
to better illustrate the case. As can be seen from the diagram, using negative
information allows the robot to rule out the left peak.
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MATHEMATICAL MODELING

Bel (s,) < j p(St [S¢_1, Uy )Bel(st—l )dSt_l

Bel(s,) < 7p(z, | 5,)Bel (s,)

P(z,|s,)

P(zl*,t |St’ rt,ot)

t: Time

|: Landmark

z: Observation

u: action

s. State

*. negative information
r: sensing range

0: possible occlusion
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ALGORITHM

Bel (s,) « J' p(st|s,_,u,_, )Bel(s,_, )ds,_,
if (landmark 1 detected) then
Bel(s,) < 70(z, | 5,)Bel (s,)
else
Bel(s,) < np(z,, | ;. 1, 0,)Bel (s,)
end 1if

800¢ AVIN



EXPERIMENTS

Particle Distribution
100 Particles (MCL)
2000 Particles to get better representation.

Not Using negative Information VS using negative
iInformation.

Entropy H (information theoretical quality measure
of the positon estimate.

—Z Bel(s, )log(Bel(s,))
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RESULTS
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r=0s negative info. t=10s
not used

Fig. 6. Particle distribution not using negative information, initial uniform
distribution and distribution after 10s. Solid arrows indicate Monte Carlo
particles (100). The experiment was repeated using 2000 particles (shaded
lines) to better represent the actual probability distribution. The actual robot
position is indicated by the white symbol, the estimated robot pose by the
solid symbol. Not using negative information and only using the bearing to
the landmark, the robot is unable to localize. Some clusters of particles form
but they do not converge. As one would expect, the position distribution is
almost uniform but the relative angle is quite distinct.




RESULTS

t=0s t=10s
negative info. used

Fig. 7. Particle distribution when negative information is incorporated. initial
uniform distribution and distribution after 10s. When incorporating negative
information, the robot is able to localize quickly.
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RESULTS
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Hipax H Hiax

*

0 10 f (sec) 0 f (sec)
1) 2)

Fig. 8. Expected entropy of the belief in the localization task with (*) and
without (thin line) using negative information. 1) At first the robot does not see
the landmark. As soon as the landmark comes into the robot’s view (indicated
by the dashed vertical line), the entropy drops. Using negative information,
the quality of the localization is greatly improved and the entropy continues
to decrease over time. 2) Additionally using field lines for localization enables
the robot to localize even without negative information. Incorporating negative
information, however., yields a higher rate of convergence and the entropy is
significantly lowered.
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class Cognition
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WHAT NEXT?

Monte Carlo Is bad for accurate sensors??!

There are different types of localization techniques:
Kalman, Multihypothesis tracking, Grid, Topology, In
addition to particle...
What is the difference between them? And which one is
better?
All These issues will be discussed with a lot more In
our next presentation (next week) Inshallah.
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MEDICINE
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UNDERSTAND AND FEAL
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PLAY WITH

800¢ AVIN



MAY 2008

OR MAYBE...



QUESTIONS

MAY 2008




