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Introduction
 Autonomous Mobile Robots

 “Rossum’s Universal Robots” play in 1920

 Mobility

 Autonmy

 Non-autonomous robot

 Semi-autonoumous robots

 Fully autonoumous robots

 Applied in many areas like missions to planet, space 
exploration, (anything difficult for human
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Introduction
 Robot Navigation

 Where am I? robotic localization.
 Where am going? Goal recognition.
 How do I get there? Path planning.

 Difficulties
 Computational power
 Object and landmark recognition.
 Obstacle avoidance
 Multi-sensor Fusion

 Errors and Uncertainty
 Odometrywheel slippage
 Object recognition
 A notion of uncertainty and belief come from probabilistic point of 

view.
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Robot Localization
 Position tracking: the robot knows the initial location, 

the goal is to keep track of position while the robot is 
navigating through the environment.

 Wake up robot (global positioning) robot does not 
know initial position.

 Kidnapped robot: the robot does exactly know where it 
is when it is localized but all of a sudden it is 
transferred or ‘kidnapped to another location.
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Robot Localization
 Available Information

 A-priori Information

 Maps (geometrical [metric form], topological[features at 
locations]); SLAM

 Cause effect relationships (given observations)

 Navigation information

 Driving (guidance system)

 Sensing
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Robot Localization
 Relative Position Measurements

 Odometry (wheel encoder)

 Inertial Navigation

 Gyroscopes: measures accelerations in orientation

 Accelerometers: measures acceleration in x or y axis.

 Absolute Position Measurements

 Landmark based (active, passive; artificial, natural)

 Map based: use geometric features(lines  walls, model 
matching)
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Robot Localization
 Multi Sensor Fusion

 How to combine readings from different sensors. 

 The sensors together can provide more complete picture 
of a scene at certain time.

 Can rely on probabilistic approach where notions of 
uncertainty and confidence are common terminology.
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Probabilistic Framework
 Probabilistic Localization

 Belief, the robot has a belief over where it is: it is the 
probability density over all locations .

 Prior versus Posterior

 the belief after incorporating all information up to 
step k including latest relative measurement

 the belief the robot has after it has also included the 
latest absolute measurement in its belief.
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Probabilistic Framework
 Probabilistic Acting and Sensing

 Acting                           

 Sensing   

 Localization Formula

 Initial Belief

 Updating the Belief
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Probabilistic Framework
 Incorporating Actions

 Total Probability Theorem

 Markov Assumption (future independent of past)

 Bayes Rule

 Markov Assumption
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Probabilistic Framework
 Complexity Issues

 Representation complexity (location space)

 Modeling Complexity (action and sensor)

 Implementation

 Discrete Belief

 Topological Graphs

 Grid

 Particle Filters

 Continous Belief

 Kalman Filters
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Kalman Filters
 Recursive data processing algorithm that estimates the 

state of a noisy linear dynamic system.

 Richard Kalman discovered the idea in 1960, it is 
considered one of the greatest discoveries in the 
history of statistical estimation theory.

 Control and Predictions of dynamic systems are the 
main areas of Kalman Filter.
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Kalman Filters
 KF is a state estimator that works on a prediction-

correction basis.

 State Estimator 

 estimate true state of some system

 Use sensor readings (observations with noise)

 Beliefs

 Prediction correction 
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Kalman Filters
 Assumptions
 Linear Dynamic System
 System Model

 Measurement Model 

 Markov Process

 Noise Characteristics
 Independence

 White noise 

 knowing amount of noise at the current time does not help in 
predicting what the amount of noise will be at any other time.

 Zero Mean

 Gaussian
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Kalman Filters
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Kalman Filters
 Algorithm

 Initilization

 Prediction Equations

 Correction Equations
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Kalman Filters
 Prediction Equations

 Uncertainty increase

 Add system noise

 Correction Equations

 Measurement Prediction

 Innovation

 Kalman Gain

 Posterior Uncertainty
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Extended Kalman Filters
 Kalman  Linear

 Non linear systems  Extended

 By linearization process

 Dynamic
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Kalman Filter and Particle Filter

 Recall

 With

 Discrete Distribution (m particles)

 Motion Model

 Measurement Model
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Kalman Filter and Particle Filter

 However, Kalman Filter (linear)

 Kalman Gain

 Updated Covariance

 Motion Model

 Measurement Model
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Kalman Filter and Particle Filter

• KF:
1. Gaussian Assumption (i.i.d.)

2. Zero Mean with associated 
Covariance

3. So, Minimum Computation

4. Linear Models (Motion & 
Measurement) 

5. EKF use linearization

6. Works well in many many
applications

• PF:
1. Act on m particles

2. Distribution defined by the 
particles

3. So, High Computation

4. Non-Gaussian Distribution

5. Nonlinear Model (Motion or 
Measurement)

6. Good for complex 
environments and systems
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Kalman Localization
• 3 Problems:

1. Position Tracking:

– Given the initial location of the robot, we want the KF to keep 
track of the position

2. Kidnapped Robot

– The robot is fully aware of its location, but all of a sudden is 
transferred to another location

3. Global Localization (e.g. RoboCup)

– the robot does not know its initial position
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Kalman Localization
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Kalman Localization

 Robot Motion Model (Odometry)

 For a robot,

 Nonlinearities: e.g. sin(.), cos(.), etc
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Vision System

Kalman Localization
 Robot Measurement (Observation) Model

 For a Landmark

 is location and orientation of a landmark relative to the 
robot,

 is location of landmark in the environment/map with 
uncertainty
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Kalman Localization
 Recall “Kalman Equation”:

 with

19 MAY 2008

)])(()([)()()(   kxhkzkKkxkx

1))()(()()(   kRHkHPHkPkK TT

)1())1(),1(()(   kwkukxfkx

Motion Model Prediction

)(kxx

h
H




 Example of linearization: Taylor 

expansion1st term of Measurement Model

Location Correction

Location Prediction

Uncertainty



Kalman Localization

 Position Tracking
 Initial information are available

 KF job is to take care of:

 Motion errors and uncertainties

 Sensor (Measurement) errors and uncertainties

 The increase in uncertainty due to prediction and the decrease 
in uncertainty due to correction keep each other in balance, 
i.e. convergence
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Kalman Localization
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Kalman Localization

 Kidnapped Robot
 If the robot has been kidnapped, it is at different location than 

where it thinks it is

 KF do its work:

 The prediction went wrong

 When measurement arrive, correction will be proportional to 
the measurement uncertainty

 It may take a while before the state estimates have adjusted to 
the new location

 If the robot would be able to detect a kidnap, it can take 
appropriate action it to re-localize itself quicker
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Kalman Localization
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Global Localization

 Initially: Robot’s belief in the location is uniform not Gaussian

 the uncertainty in the prior (initial) state estimate is extremely large 

 the Kalman Gain becomes the measurement matrix (model):

 First state estimate:
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Localization with Landmarks!

 We have a map with the location of landmarks in global 
coordinates

 Measurements are landmarks locations relative to the 
robot coordinates

 So, ‘Correspondence Model’ is needed
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Localization with Landmarks!

 Correspondence Model is like what is done in German 
Team:

 Field lines

 Goals

 Beacons
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RoboCup Teams Localization
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Team/Univ Technique Remarks

Nubots, University of 

Newcastle, Australia
EKF

When there is insufficient information available or 
ambiguous, problems with
slow estimate ‘drift’ with time. Some Adaptive 
Control is done!

BabyTigers DASH, 
Osaka City University, Japan

MCL

Cerberus, Bogazici

University, Turkey
S-LOC Mixture Concepts, explained in 2005 report

Eagle Knights, ITAM, 

Mexico
Triangulation + Correction Algorithms

Team Chaos, 
University of Murcia, Spain

Fuzzy Logic
claiming extended techniques with only 

natural landmarks

S.P.Q.R., Universit`a

di Roma, Italy
MCL + SIR

Two stages: MCL then Sampling/Importance 
Sampling

UChile1, Universidad de 

Chile, Chile
MCL + EKF Tried a faster Adaptive-MCL but accuracy low

sharPKUngfu, 
Peking University, China

MCL Collaborative Localization



Questions
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