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 

Abstract—This paper will review a relatively new field of 

research, namely the area of Cooperative Control. This 

paper/report will cover many aspects about the field of 

cooperative control. The paper can be considered as a 

comprehensive study of many, if not all, related elements of 

cooperative control. This field studies the interconnections 

between systems to act collectively towards global objective or 

more. The study in this paper is induced by control theory being 

the steering wheel. In this paper, along with the detailed review 

of fields of cooperative control, a specific area of application is set 

as the regular example. The paper will consider the area of Multi-

Vehicle Autonomous Systems. Decentralized control solutions can 

be employed in local systems and giving results matching global 
objectives. The powerful utilization of Graph Theory gives solid 

mathematical foundation to model communication 

interconnections. Many techniques under the field of cooperative 

control have interesting findings. The main principle of 
Consensus was set as the standard problem that included most of 

cooperation problems. Special tasks as formation control was 

discussed with detail in relation with other aspects in control 

theory. Applications and research status were discussed to give 

many possible areas of practical commercial use. 

 
Index Terms—Cooperative Control, Decentralized Control, 

Consensus Problem, Formation Control, Multi-Vehicle Systems, 

Graph Theory, Swarms,  

 

I. INTRODUCTION 

 

ONTROL THEORY has always been related to many 

research disciplines. Since many years, conventional and 

modern control theory techniques were studied and developed. 

Applications evolved a lot throughout the years. As 

applications span grows more and more with different needs, 

research move toward new horizons. With the current 

technology power, utilizing new techniques and methods 

became easier. Specifically, computing and communication 

technologies gave more solid and simple handling of 

problems. With the growing complexity of many problems 

nowadays, new approaches are needed to tackle these 

complexities. Complexity of problems comes in the form of 

difficult analysis or design. However, with the current 

research resources and skills, development is rapidly growing. 

This paper will review a relatively new field of research, 

namely the area of Cooperative Control. This paper/report will 
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cover many aspects about the field of cooperative control. You 

can think of the paper as a comprehensive survey of many, if 

not all, related elements of cooperative control. This field 

studies the interconnections between systems to act 

collectively towards global objective or more. The study in 

this paper is induced by control theory being the steering 

wheel. Other approaches can be found by a lot of researchers 

in the literature. In this paper, along with the detailed review 

of the field of cooperative control, a specific area of 

application is set as the regular example. The paper will 

consider the area of Multi-Vehicle Autonomous Systems. This 

application will be as the main example, but this will never be, 

in the paper, the only example studied and analyzed. The 

paper/report is divided into two overlapping major parts, one 

is background and the other is mathematical development. 

This is a rough partitioning of the paper. 

 

This report/paper will start to give the essential background 

about the field of Cooperative Control. In Section II, the paper 

will review, in detail, the common descriptions and 

motivations found in literature along with the basic definitions 

and goals of Cooperative Control with relation to other 

approaches found in the research community. Section III will 

give the detailed applications and areas of interest of 

Cooperative Control. Then, mathematical details of the paper 

will begin. So, needed background knowledge for the reader 

will be presented in Section IV, namely Graph Theory and 

Multi-Vehicle Dynamic Systems problem formulation. The 

study of different Models describing cooperative systems with 

Stability Analysis will be given in Section V, with providing 

various techniques and approaches. Section VI will offer 

diverse Control Design techniques. Section VII will 

investigate the current status of research around the world with 

giving glimpses of what could be future research directions in 

the field of cooperative control. Simulation examples are 

provided in Section VIII. Section IX will conclude the 

report/paper. 

II. COOPERATIVE CONTROL BACKGROUND 

 

In this section of the paper, definitions and motivation of 

the field is provided. II-A is reserved for what is motivating 

research in the field. II-B will give different definitions and 

terminologies found in literature concerning cooperative 

control. II-B will be the most important part in Section II 

because of the detailed and informative nature of it. II-C 

provides the reader with other approaches that deal with the 

area.  
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A. Motivation 

 

Recent technology provides advanced performance and 

capability with more efficient computation and less expensive 

communication. With growing need of distributed operations 

in several applications, complexity of problems increases. 

„Distributed‟ is in the sense of the having different 

components (or agents) with local objectives towards 

fulfilling a global objective or more. This view can be 

imagined with association with many areas. The aspect of 

Autonomy is essential to have machine decision-making 

systems. Local operation can be related to the dynamic nature 

of agents. Local objectives are met using well-made 

techniques available. „Local agents‟ can be mechanical 

manipulators in an assembly line, multiple mobile robots 

landed on Mars or even a herd of animals in the wild. Other 

detailed information about application will be discussed in III. 

Every „agent‟ is concerned with some kind of individual 

purpose or goal. However, when having a group of agents, 

„coordination‟ or „cooperation‟ should be maintained. The 

group when acting towards meeting a global goal, 

„information‟ should be shared in order to have the accurate 

coordination and cooperation.  

 

Cooperative control is concerned with engineered systems 

that can be characterized as a 1) collection of 2) 

interconnected decision-making components (systems) with 3) 

limited processing capabilities, 4) locally sensed information 

and limited inter-component communications, 5) all seeking to 

achieve a collective (global) objective. Global (opposite to 

local) processing and communication with big number of 

agents make the problem more and more complex. An 

approach to only operate locally to meet global goals is 

adopted. This „local‟ strategy makes life easier with the 

current communication/control capabilities. As mentioned 

before, complexity could be decreased by proper design of the 

agents. 

 

Other issue that motivates this field of study can be the need 

of scalability, i.e. large and not fixed number of 

interconnected systems.  Another big motivation is to 

implement the dynamic systems and control theory approaches 

into the design of agents. The „dynamic‟ element is of big 

importance because it provides the solution for giving reactive 

and instantaneous actions towards robust global outputs. 

Motivation also comes also from examples of „successful‟ 

cooperative systems found in nature. Examples of cooperative 

systems in nature can be schools of fish, flocks of birds or 

even bacterial colonies. These existing systems can give us a 

look upon how to mimic the robust and dynamic behavior of 

them. On the other hand, one can consider that a common 

problem with a group of systems, in general, is the 

environment surrounding these systems. The environment is 

dynamically changing and uncertain. 

 

B. Definitions 

 

Here in this part of the paper, detailed information will be 

presented for the reader. Unlike many papers found in 

literature, this paper will provide, hopefully, different points of 

view towards the problem of cooperative control. Having that 

said, most papers deal with the problem with usually changing 

terms and notions depending on the application. However, 

generally all problems come from the same issue of the need 

of cooperation. Actually, most researchers in the field flip 

their language back and forth. At the end, they all serve for the 

same problem.  

 

In section II-A-1of the report, a start of introducing several 

researchers around the world with research areas that have 

done work related to cooperative control. In II-A-2, concepts 

inside the field of cooperative control will be discussed in 

detail. 

 

1) Related Research 

 

Cooperative control can be found and viewed in the same 

context with relation to Networked Systems & Control, which 

studied by prominent researchers as R. Murray and Olfati-

Saber (e.g. as in [1]). The study of cooperative control of 

multi-agent systems in relation with Networked Dynamical 

Systems and Graph Theory can be seen in the work of 

Jadbabaie (e.g. as in [10]).  Relation to Motion Coordination 

& Planning is studied by researchers as V.J. Kumar. Also, 

relation with the study of Mobile Sensor Networks appears in 

the work of Naomi Leonard. Relation to Motion Planning for 

Robotic Networks is seen in the research of Francesco Bullo 

and Raffaello D'Andrea. Multi-agent Control & Estimation 

research can be seen in the work of Domitilla Del Vecchio. 

Other point of view is provoked by natural existing 

cooperative systems. Observing and study of animal collective 

behavior lead to the field of Swarms or Swarm Robotics. Even 

the word „swarm‟ was used very often on parallel with other 

terminologies. Early study of Swarm Stability is done by 

Passino [3]. Also, biologists have contributed to the study of 

animal collective motion as in the work of Vicsek and 

Reynolds. Self-organizing Systems study is related to 

cooperative control in the sense of the objective of a group to 

achieve a global goal as found in the work of Kalvins. 

 

2) Cooperative Control Concepts 

 

As observed before, terms of „multi-agent control‟, 

„distributed control‟, „networked control‟, „swarm‟ or 

„coordinated control‟ are all equivalent to Cooperative 

Control. Under that field, there are many hot research areas. 

Here in this section, we will give information about what 

research is done in the name of cooperative control. 

 

First, a concept should be cleared. As cooperation needs 

sharing information, techniques should be designed in an 

efficient way in order to reduce complexity and improve 
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practicality. As mentioned before, decisions of each individual 

agent is computed locally. This concept is called 

Decentralized Control as opposed to centralized control. In a 

centralized solution, there is one decision-maker that has 

access to all information incoming from all agents. 

Furthermore, there is typically a communication cost in 

distributing gathered information. As a central „controller‟ is 

responsible for the whole problem, computational complexity 

increases because different reasons like the size (number of 

agents). Also, communication complexity increases in a 

centralized control because the limits of bandwidth and 

connectivity. Actually, communication failure in the central 

controller means the failure of the whole system even if not all 

agents have troubles.  

 

Decentralized Control has the advantage of not limiting 

the capabilities of each agent. The reader can imagine 

considering multiple mobile robots for the purpose of, for 

example, Mars exploration. Each robot has its own controller 

that is responsible for local motion and tasks. The same 

controller is properly designed to also cover for the objective 

of the whole group. The reader has to put in mind that an 

agent‟s controller has no coupling with any other controllers 

of other agents, i.e. each controller is fully independent. This 

somehow has similarities with hierarchal control.  

 

Secondly, under the inspiration of biological systems and 

the need of technologies, many problems have been defined as 

the main areas under cooperative control: Flocking, 

Consensus, Rendezvous, Formation Control and Swarming. 

All cooperative control problems contain the analysis of 

behavior of a group of agents. The agents are arranged in 

some geometrical map or Graph in state space of the agents 

(e.g. position or heading). This graph defines the 

interconnections between agents. Figure 1 gives a pictorial 

view of this concept, graph nodes being the agents and edges 

being the interconnections. We assume that the graph changes 

dynamically. Of course, the graph depends on the states of 

each agent. A complete introduction to Graph Theory will be 

delivered in Section IV. Each one of field of study under 

cooperative control will be explained in some detail. 

 

- Swarming: “to move or gather in group”. In a swarm, a 

specific formation (shape) is not maintained. Usually, 

swarms as a topic is studied as any other field under 

cooperative control. The difference is only that the 

word „swarm‟ often used for natural biological systems 

or for reasons will be discussed in II-C. 

 

- Consensus: “the group to reach a position as whole”. 

This definition is applicable to many applications. One 

can consider Swarming as a part of consensus. The goal 

in both is similar. In consensus: 

 

lim
𝑡→∞

𝑥𝑖(𝑡) = lim
𝑡→∞

𝑥𝑗 (𝑡)                                              (1) 

 

As 𝑥𝑖 the position (state) of agent i, with 𝑥𝑗  being the 

state of all agents other than i. In more general terms, 

„consensus‟ can mean to reach an agreement about the 

states of all agents, not necessarily the position. But in 

a normal multi-vehicle system, the general goal of 

cooperative control is related to the position of each 

agent. In network community, consensus is defined 

more for computer network applications rather than 
mobile vehicles. Consensus is often regarded as 

consisting of many subfields. Actually, other fields in 

cooperative control can be treated as „consensuses‟. 

 

- Flocking: “to travel in a flock”. Flocking studies is 

inspired by biological systems of birds and fish. This 

field is pioneered by the Reynolds as been showed in 

[4]. Reynolds introduced three rules, often used by 

computer animation community. These rules define the 

behavior of any flock geometrically. The three flocking 

rules of Reynolds are 

1) Flock Centering: to stay close to neighboring 

flock mates (Cohesion); 

2) Collision Avoidance: to avoid collision with 

neighboring flock mates (Separation); 

3) Velocity Matching: to match velocity of 

neighboring flock mates (Alignment). 

To achieve the 3 above objectives, Flocking Algorithms 

were developed. To fulfill these objectives, an agent in 

a flock could attain to the motion of a leader or virtual 

leaders defined depending on the topology (graph) of 

the agents. 

 

- Rendezvous: “to meet at a pre-arranged position and 

time”. This is more interesting problem. This is a 

special case of consensus problem. Here consensus is 

agreed upon specific position and time. All agents must 

reach the predefined position simultaneously. So even 

when an agent, for example, is approaching its 

destination faster than other, the agent tries 

dynamically to slow down to meet the requirement of 

the group in position and time. Different speeds of 

 
Fig. 1.  Graph of the Agents. The graph defines the interconnections 

(communication) between agents. Graph nodes being the agents and edges 

being the interconnections. 
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agents should be taken in consideration in the design to 

fulfill the requirement. Applications of the rendezvous 

problem can be imagined especially in critical ones, 

such as military. 

 

- Formation Control: according to [5], a Formation 

Control problem defined as “to drive the agents to 

special configuration such that their relative position 

satisfy a desired topological (spatial) and physical 

constraints”. In simple words, this means that the 

required objective is to arrange the agents in desired 

shape. This is a hot topic of research. Many papers 

investigate many problems associated with formation 

control. Actually, formation control is a specific 

problem under cooperative control world. It is obvious 

that it is a consensus problem. It also involves some 

attachments to flocking and rendezvous if required by a 

specific requirement. Desired formation can be defined 

in 2D or in 3D. Formations should maintain themselves 

even in the presence of obstacles. Formation Control 

will be discussed with more elaboration in Section V & 

VI. 

 

C. Other Approaches 

 

Here in this small section, another approaches dealing with 

cooperative systems is discussed. The approaches here are 

different than what previously discussed due to the 

background of researchers. Specifically, here the discussion is 

just giving another perspective of the problem. The 

perspective is coming from the area of Artificial Intelligence. 

As been referred earlier, Swarms has been studied in the 

context of intelligence. There is a field standing by itself 

called Swarm Intelligence. The Multi-Agent problems are 

treated from behavior point of view. You can see the great 

work in the area of Behavior-Based Robot Cooperation 

through the research of Lynne Parker (e.g. as in [11]). 

However, most of artificial intelligence approaches lack the 

dynamic and instantaneous actions required by a robust 

cooperative system. 

Other Researchers have work related to cooperative control 

are many because the multi-disciplinary nature of the area. 

The collection of names given here is just to inform the reader 

of world‟s leading researchers in the field. So to name some 

people working in cooperative control area or related area: 

Calin Belta, Andrea Bertozzi, Magnus Egerstedt, Rafael 

Fierro, Bruce Francis, Jie Lin, Steve Morse, Daniela Rus, 

Shankar Sastry, Herbert Tanner, Claire Tomlin and George 

Pappas. This is a short list of prominent researchers working 

in cooperative control. 

III. APPLICATIONS OF COOPERATIVE CONTROL 

 

Here in this section, a practical point of view is discussed of 

the field. We will give different feasible practical applications 

that cooperative control methods can be used. This section is 

divided into three parts. Section III-A will give closer look 

into critical applications of Military Systems and Space 

Systems. Section III-B will shed the light into more civilian 

applications that touch peoples‟ daily life. Section III-C will 

just give „applications‟ in research and academia 

environments. The above partitioning is done for the purpose 

of making it easier for the reader to track his/ her area of 

interest. 

 

A. Military & Space Applications 

 

Battlefield environments are similar to planetary 

environments. A great deal of sophistication is required to 

develop systems that can work effectively in those regions as 

it is depicted in figure 2. With the advanced development of 

unmanned vehicles, central command centers are no more 

practical with the emerging need of large number of vehicles 

and the large land coverage areas. The dynamic nature of the 

surroundings implies also the need of cooperation.  

 

1) Space 

 

Space Exploration application has wide relation to 

cooperative operations.  A mission to Mars needs a collection 

of mobile robots exploring the planet in parallel with sharing 

the information together referring to mother center. More 

applications can be imagined to utilize cooperation in Mars, 

for example. Other explorations can be employed in our 

planet, Earth, to look for valuable resources (e.g. oil in the 

case of Saudi Arabia) in deserted and harsh areas. A 

cooperation element can add a great deal of ease to the 

problem.  

Another major application in space is Satellites Formation. 

These formations are applied usually to microsatellites to meet 

certain objective for the collection resembling one complex 

satellite [12]. Collaboration is needed from all microsatellites 

to meet the unified goal, for example imaging. 

 
Fig. 2.  Example of Application utilizing cooperative control techniques. 

Unmanned Aerial Vehicles (UAVs) is an area with great research work done. 

Cooperation and coordination are major issues studied. 
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2) Military 
 

Here, more detailed look upon military applications is 

presented. The talk discussed here is obtained from the work 

of Murray [13]. Research was done heavily in the fields of 

Unmanned Aerial Vehicles (UAVs) and Unmanned Ground 

Vehicles (UGVs). Formations with UAVs are deployed in 3D 

space. For a critical military mission, a robust formation 

control must be maintained. For a follower aircraft, tracking 

the leader is the objective. However, trajectory planning for 

the leader is an element in the design for the whole group. One 

problem is to minimize the energy spent in the trajectory while 

keeping a rigid formation. 

Cooperative Surveillance is an interesting application. This 

can be defined by the problem describing the state of a 

geographic area through the decentralized collection of 

vehicles. Rendezvous problem in military is important as 

mentioned before. One application of that is to minimize the 

exposure to radar via assigning a split strategy with a limited 

time.   

 

B. Civil Applications 

 
In this section, more people related applications are 

explored. This is still a new area of investigation. One of the 

well-studied applications is Automated Highway Systems or 

Intelligent Transportation Systems. Forming car platoons (line 

of cars one behind the other with separating distance of one 

meter for example) is an example of ideas of related system. 

Automated transportation systems are kind of dreams that 

could come to reality with proper control design. Imagine 

fully automated cars with collision-avoidance capability and 

other features of coordinated motion. Here the information 

shared by agent (cars) are either coming from communication 

between them other sensory information such as vision 

systems, i.e. camera. Benefits of an automated transportation 

are many. To name few: reducing congestions, increase road 

safety and of course driverless commuting. 

 

Another application is a civil environment is related to safety 

and security. One can imagine various applications. Land mine 

detection can use cooperation between vehicles in order to 

demine the land. Another application that can be investigated 

is the process of searching for missing people in area hard for 

humans to operate in; or to search for dangerous materials or 

bomb in an evacuated building.  

 

C. Applications in Academia & Research 

 

Here, just a brief overlook upon applications of cooperative 

control in academia and research is presented. One big 

application is Mobile Sensor Network. The main difference 

from conventional sensor networks is the element of mobility 

as a part of control. The global goal is to gather information 

for specific purpose. Cooperative control comes as an aid for 

agents, here mobile sensors, to maximize the amount of 

information collected. Some name this adaptive sampling. 

Another well-developed area of research done in cooperation 

is the RoboCup competitions. The competition aim is that by 

2050, a team of humanoid, i.e. human-like, robots can beat the 

human football (soccer) world cup winner at that time, playing 

in the regular rules and environment as standard. This big aim 

is being chased through an annual competition in different 

modes of play. Until now, cooperation in robot matches is still 

investigated from the artificial intelligence point of view. With 

growing research of cooperative control, more improvements 

can be added to the current RoboCup technologies. 

Labs research also, of course, uses methods of cooperative 

control to solve many research problems available in the same 

field or in other areas as well. Research is not only done in 

engineering departments. Biological and environmental 

studies study different models of swarming or cooperation in 

order to have more solid understanding of nature of several 

kinds of life beings which practice cooperation and 

coordination in a dynamic and reactive way. 

 

IV. NEEDED INFORMATION IN COOPERATIVE CONTROL 

 

With this section, the solid mathematical study of the field 

of cooperative control starts. From now on, previous 

introductory discussion is assumed to be understood by the 

reader. Terms and notions of cooperative control literature will 

be used as explained previously. Section IV-A will set the 

problem formulation of Multi-Vehicle Systems. Different 

dynamic models will be discussed. Cooperative control 

models and algorithms will be left for Section V. In Section 

IV-B, preliminary information about Graph Theory will be 

delivered with the required amount linked to cooperative 

systems. 

 

 
Fig. 3.  A platoon of cars. Automated Transportation Systems is a daily 

solution for increasingly crowded roads. Cooperative control could give 

„smooth‟ solutions to this. 
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A. Autonomous Multi-Vehicle Systems 

 

Multi-agent systems can be defined, in general, by “systems 

that consist of multiple agents or vehicles with several 

sensors/actuators and the capability to communicate with one 

another to perform coordinated tasks”. Different dynamic 

models will be discussed here. All will give the picture of the 

local behavior of the group of agents. Notations in this section 

will be carried out in the rest of the paper.  

 

Consider a group on N vehicles with identical dynamics of 

 

𝑥 𝑖 = 𝑞 𝑥𝑖 , 𝑢𝑖  
𝑦𝑖 = 𝑕 𝑥𝑖                                                                 2  

  

With i = 1,…, N vehicles. With 𝑥𝑖  ∈ ℝ𝑚  being the original 

states of the vehicle defined as the position. 𝑢𝑖  ∈ ℝ𝑝  being the 

control input to the vehicle. In our case, if we assume ground 

vehicles, control input can be throttles, for example. With 𝑞 .   
and 𝑕 .   define the state and output equations respectively. 

With 𝑓 reflecting the mechanics of the vehicle. In this paper, 

without loss of generality, m = 2 can be assumed. This means 

that the vehicles at hand are defined with motion in a 2D plan. 

3D motion can be defined for UAVs, foe example. Note here 

that the time index t has been dropped deliberately from the 

states, outputs and inputs. This will be the case in the rest of 

the paper unless other thing mentioned. 

At this stage, we can assume the accessibility of each 

vehicle to other vehicles states. Further elaboration about the 

communication models will be discussed in Section V. Also, 

here we are going to present two kinds of dynamic models of 

the vehicles.  Both is presented here for the purpose of giving 

the reader comfortable informative view of systems under 

study. One will describe a two-wheeled vehicle. The other will 

describe a linear vehicle model.  

 

1) Wheeled Vehicle Dynamic Model 

 

The reason of giving the dynamic model of this kind of 

vehicle is to shed the light in a common type of vehicles 

studied in research. The dynamics of this vehicle, as described 

in [6[, can be as 

 

𝑥 𝑖
𝑥 = 𝜈𝑖 cos 𝑥𝑖

𝜃  

𝑥 𝑖
𝑦

= 𝜈𝑖 sin 𝑥𝑖
𝜃  

𝑥 𝑖
𝜃 = 𝜔𝑖                                                                 3  

 

With 𝑥𝑖
𝑥 , 𝑥𝑖

𝑦 , 𝑥𝑖
𝜃  being x-position, y-position and heading of 

the vehicle respectively. With 𝜈𝑖  𝑎𝑛𝑑 𝜔𝑖  being linear and 

angular velocities respectively as the control inputs of the 

system. From (2), 𝑥𝑖 =  𝑥𝑖
𝑥  𝑥𝑖

𝑦
𝑥𝑖

𝜃  
𝑇

 and 𝑢𝑖 =  𝜈𝑖  𝜔𝑖  𝑇  . 

It is obvious that this dynamic model is nonlinear. For some i 

and j vehicles, the distance 𝑙𝑖𝑗  between the two is computed 

by 𝑙𝑖𝑗 =   𝑥𝑖
𝑥 − 𝑥𝑗

𝑥 
2

+  𝑥
𝑖

𝑦 − 𝑥
𝑗

𝑦 
2

. (See figure 4). This 

nonlinear model can be used in advanced control problems 

when analysis of actual dynamics of the vehicle is studied 

along with the cooperative control design. This will be used in 

other place in the report. When the cooperative algorithms are 

to be studied with the assumption of the well-done designed 

vehicles, a simpler dynamic model is considered as in next 

section. 

 

2) Linear Vehicle Dynamic Model 

 

As the global problem of cooperative control is concerned 

with the interconnections between agents (vehicles) and the 

higher-level control strategies, nonlinear dynamic can be 

dropped. So, the vehicle can have the dynamic model of  

 

𝑥 𝑖 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 

𝑦𝑖 = 𝐶𝑥𝑖                                                                 4  
 

With 𝐴 ∈ ℝ𝑚×𝑚  and 𝐵 ∈ ℝ𝑚×𝑝  . This model can give us 

the flexibility of solid study of the higher-level control of the 

group and the interconnections between the N vehicles. Also, 

the model will give us the chance of designing the proper 

decentralized control input u. One option of a model can treat 

the vehicle as the double-integrator model  

 

𝑥 𝑖 = 𝑢𝑖                                                                     5  
 

Put in mind that all states interact with each other through 

the topological arrangement of the vehicles, i.e. 

communication graph. This communication graph is deployed 

according to the sensory information available. As mentioned 

before, with all vehicles having access to all others‟ states, 

nature of communication can be assumed to be from wireless 

bidirectional channels. Another kind of sensory information 

can be utilized by the technology found onboard of the 

vehicle, such as vision processing system with a camera or 

ultrasonic range sensors As in figure 1, nodes represent the 

vehicles and edges represent the „interaction‟ between the 

vehicles. All details about graph description of certain group 

 
Fig. 4.  Picture of two wheeled vehicles. 
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will be explained in next section.  

 

B. Graph Theory 

 

The communication structure of the group of N agents is 

described by a graph. Graph Theory gives us the complete 

mathematical correspondence to what we want. With [7] and 

[8] the main papers giving us the introduction, this preliminary 

information about graph theory with relation to our need is 

presented.  One should inform the reader that here we are 

dealing with the algebraic graph theory.  

 

- A directed/undirected graph 𝒢(𝒱, ℰ) consists of a 

vertex set 𝒱 and an edge set of ℰ.  

- An edge is defined as any ordered pair of distinct 

vertices (for a directed graph,  𝛼, 𝛽 ≠ (𝛽, 𝛼) and 

 𝛼, 𝛽 = (𝛽, 𝛼) for undirected graph).  

- If 𝛼, 𝛽 ∈ 𝒱, i.e. are vertices, and (𝛼, 𝛽) ∈ ℰ , i.e. form 

an edge, then, 𝛼 𝑎𝑛𝑑 𝛽 are said to be adjacent.  

- A path from 𝛼 to 𝛽 is the sequence of distinct vertices 

starting with 𝛼 and ending with 𝛽 such that any two 

consecutive vertices are adjacent.  

- Graph 𝒢 is said to be connected if there exist a path 

between any two vertices in 𝒢.  

 

To relate graph theory with control theory, matrices is 

associated with the graphs. With vertices are associated with 

agents (vehicles), they, vertices, can be denoted as 𝛼𝑖, giving 

us N vertices.  

 

- The normalized adjacency matrix of a graph 𝒜 𝒢  is a 

square matrix of size N indexed by the vertices.  

- Element 𝒜𝑖𝑗 = 1/𝑑(𝛼𝑖) if  𝛼𝑖 ,𝛼𝑗   exists. 𝒜𝑖𝑗 = 0  

otherwise. 𝑑 𝛼𝑖  is the number of edges going out of 

𝛼𝑖  .  
- The normalized Laplacian of a directed graph is 

defined by  

 

𝐿 = 𝐼 − 𝒜                                                               6  
 

Furthermore, the neighborhood 𝒩𝑖  of a agent 𝑥𝑖 is defined 

by 

 

𝒩𝑖 =  𝑗 ∈ 𝒱 ∶  𝒜𝑖𝑗 ≠ 0                                                   7  

 

This means that the collection of agents j „seen‟ by agent i 

is the neighborhood of it. In other words, agent i has the 

neighborhood of all agents that are adjacent to it.  

 

- The Laplacian of a graph is defined as 

 

𝐿 =  𝐿𝑖𝑗  , 

𝐿𝑖𝑗 =  
−1,   𝑗 ∈ 𝒩𝑖

 𝒩𝑖  ,    𝑗 = 𝑖
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                                              8 . 

 

o  𝒩𝑖   equal to the number of agents in the 

neighborhood of agent i 

o the Laplacian of a graph defines the 

connectivity between vertices.  

o The Laplacian is a row stochastic matrix, 

which means that the sum of each row equal 

zero.  

o L is a positive semi-definite matrix.  

o L is symmetric for an undirected graph. 

o The multiplicity of zero eigenvalue of L is 

equal to the number of connected edges. 

 

The above definitions can be visualized in figure 5. In that 

figure, a connectivity graph is shown for 6 vehicles. Figure 5 

shows a directed graph. The normalized Laplacian associated 

with the graph is 

 

𝐿 =
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1
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From figure 5 and associated Laplacian we can say that 

vehicle 1 can only „see‟ vehicles 2 and 4. Vehicle 2 can „see‟ 

only vehicle 4, and so on. Line of sight of a vehicle is defined 

by the sensory information of that vehicle only. Note that L 

can be time-varying. 

 

V. COOPERATIVE CONTROL MODELS 

 

You can consider this is the real part relating to cooperative 

control. In this section, detailed discussion of different models 

 
Fig. 5.  A connectivity graph of 6 vehicles. 
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and strategies of cooperative control is presented. Before 

further analysis, the complete multi-vehicle system defined in 

(4) can be represented by 

 

𝑿 = 𝑨𝑿 + 𝑩𝑼                                                        9  
 

With 

 

𝑿 =  𝑥1 𝑥2 ⋯ 𝑥𝑁 𝑻, 

𝑼 =  𝑢1 𝑢2 ⋯ 𝑢𝑁 𝑻. 

 

And 

 

𝑨 = 𝐼𝑁 ⊗ 𝐴, 

𝑩 = 𝐼𝑁 ⊗ 𝐵                                                           10 . 
 

The operation ⊗ is called the Kronecker Product. This 

operation is defined by 

 

𝑄 ⊗ 𝑃 =  

𝑞11𝑃 𝑞12𝑃 ⋯ ⋯

𝑞21𝑃 𝑞22𝑃

⋮ ⋱
⋮ ⋱

 =  𝑞𝑖𝑗 𝑃        11  

 

One can see the new augmented system of the form 

 

 

𝑥 1
𝑥 2
⋮
𝑥 𝑁

 =  

𝐴 0 ⋯ 0
0 𝐴 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴

  

𝑥1

𝑥2

⋮
𝑥𝑁

 +  

𝐵 0 ⋯ 0
0 𝐵 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐵

  

𝑢1

𝑢2

⋮
𝑢𝑁

  

 

In (8), 𝑿 ∈ ℝ(𝑁×𝑚 )×1 , 𝑼 ∈ ℝ(𝑁×𝑝)×1  , therefore, 𝑨 ∈

ℝ 𝑁×𝑚 ×(𝑁×𝑚 ), 𝑩 ∈ ℝ 𝑁×𝑚 ×(𝑁×𝑝) . So, in (9), the whole 

group of vehicles are now characterized by 𝑨, B. This will let 

more freedom in studying the multi-vehicle system for further 

higher-level of control, namely cooperative control. You can 

see clearly that each agent is not in any way coupled with 

another one. We assume here also that any vehicle can have 

the values of others‟ states if they are from the neighborhood 

of the vehicle. In more simple illustration, vehicle i have 

access to all 𝑥𝑗  for all 𝒩𝑖 defined in (7).  

 

In order to have a solid analysis and design for a high-level 

control of the group, the interconnections between vehicles 

should be translated to a mathematical way. We define a 

performance output 𝑧𝑖  for vehicle i and defined by  

 

𝑧𝑖 = 𝐺 𝑥𝑖 =  𝑔 𝑥𝑖 − 𝑥𝑗  

∀𝑗∈𝒩𝑖

                      12  

 

With 𝑔 𝑥𝑖 − 𝑥𝑗   defines interaction between vehicle i and 

vehicle j. 𝑔 .   can be called the interaction function. This 

function is related in some way to the connectivity graph of 

the vehicle under analysis. Having (9) and (12), the stage is set 

for further cooperative control study of methods and 

algorithms. First in section V-A, the early models of 

cooperative systems are studied to have a feeling about the 

original work in the field. Then in section V-B, an overview of 

different Consensus algorithms is presented. V-C will 

conclude with study of Formation Control strategies. Stability 

Analysis will also be discussed in all parts. Remember that 

Control Design will be delivered in Section VI. Sections V 

and VI have been made separate for giving an independent 

look upon cooperative control strategies analysis in one hand 

and the process of design in the other.  

 

A. Early Models 

 

The models discussed here are coming from studies inspired 

by biological systems. The work of Vicsek et al. presented in 

[10] gives us a view of the swarm behavior of different species 

in nature. Without loss of generality, here we present a 

discrete-time model which has no different implications from 

the continuous one. Both reflect the same thing in terms of 

concept. We assume here that we are interested only in the 

headings of agents; here are birds, fish, ants, etc. So, a 

coordinated motion of the group is governed by 

 

𝑥𝑖
𝜃 𝑘 + 1 =

1

1 +  𝒩𝑖(𝑘) 
 𝑥𝑖

𝜃 𝑘 +  𝑥𝑗
𝜃 𝑘 

∀𝑗∈𝒩𝑖 (𝑘)

      13  

 

With  𝒩𝑖(𝑘)  equal to the number of agents in the 

neighborhood of agent i at time instant k. Eq. (13) tells us that 

next heading update is in some kind of a weighted average of 

the preceding headings available for an agent. The model in 

(13) started the boom of research in this field. Model defined 

by (13) is called Vicsek‟s Model.  

 

According to [10], stability is maintained for the whole 

group. Stability in a cooperative system is reflected by the 

convergence to the desired configuration as 𝑡 → ∞ . we here 

are assuming that the neighborhood of agent i is not fixed. 

This also means that the connectivity graph 𝒢 is time-varying. 

Actually the connectivity graph 𝒢 is changing a switching 

fashion. So for the group to be stable, i.e. converge to some 𝑥 𝑖
𝜃  

for all i, then the union of all graphs 𝒢 𝑘 , 𝒢 𝑘 + 1 ,… , 𝒢 ∞  
should form a connected graph (refer to definition of a 

connected graph in IV-B). 

 

B. Consensus Algorithms 

 

Here in this section, information about Consensus methods 

is discussed. Many problems in cooperative control can be 

considered as a consensus problem, as explained earlier. We 

will show here different kinds of algorithms. We mean by 

consensus that 

 

 𝑥𝑖 − 𝑥𝑗 → 0  𝑎𝑠  𝑡 → ∞                                       14  

 

 Notice that (14) is equivalent to (1). To fulfill the consensus 
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rule in (14), one can suggest a behavior for vehicle i by 

 

𝑥 𝑖 = −
1

 𝒩𝑖  
  𝑥𝑖 − 𝑥𝑗  

∀𝑗∈𝒩𝑖

                                     15  

 

In (15), vehicle‟s state is updated as an average of 

information available for it. For more generalization of 

consensus problem, one can define a consensus „protocol, by 

 

𝑥 𝑖 =  𝑎𝑖𝑗 ∙  𝑥𝑖 − 𝑥𝑗  

∀𝑗∈𝒩𝑖

                                     16  

 

Eq. (16) defined a general rule for consensus of a group of 

vehicles. with 𝑎𝑖𝑗  being a relative weight between vehicles i 

and j. If vehicles i and j communicate in a bidirectional way, 

then one can assign 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . One can observe that the group 

of vehicles that have bidirectional interconnections, have a 

undirected connectivity graph. We can say that for the group 

of vehicles defined by the dynamics in (9) that have a 

connectivity graph 𝒢 , a desired collective dynamics of the 

group can be defined by 

 

𝑿 = −𝐿𝑿                                                                 17 . 
 

With L being that Laplacian of the associated with 𝒢. You 

can see that for bidirectional communication between vehicles 

lead to a symmetric L. When the graph associated with the 

group found to be undirected, it has been found that the states 

converge, i.e. stabilize, if 𝒢 is connected. You can check the 

eigenvalues of the Laplacian. It is found also that the 

convergence point is the average of the initial state values of 

the vehicles. When the graph associated is directed, this does 

not imply that the group will converge.  

 

Furthermore, generally, for a connected graph, stability is 

maintained; and for unconnected one, the system becomes 

unstable. However, if the communication between vehicles is 

switching arbitrary (L is time-varying), due to different issues 

that the reader can imagine why, stability is not reached unless 

a condition is fulfilled. From [10], this condition can be 

summarized into:  

 

“Consensus is reached asymptotically if there exist 

infinitely many consecutive bounded time intervals such that 

the union of the graphs over such intervals is totally 

connected”. 

 

 Note that in the above condition, „time intervals‟ is defined. 

That is because that as we are analyzing a continuous-time 

model of the system, switching graph is triggered in discrete 

manner. Note that usually, 𝐿(𝑡), i.e. time-varying Laplacian, 

can not be defined explicitly.  

As the consensus problem is the mother of all other 

cooperative control problems, discussion done above will 

benefit further study for different strategies.  

 

C. Formation Control 

 

Formation control is not, by any means, different than 

consensus problem. However, because of the great importance 

of designing dynamic vehicle formations, a branch of research 

stands alone to study different kind of problems. In formation 

control, the goal is not only to agree on a common position. It 

requires that the group of vehicles maintain predefined relative 

positions between one another. Formations are defined in the 

state space of the agents. For multi-vehicle systems, 

formations are defined in 2D space. Examples of different 

formations are shown in figure 6.  

The most simple consensus algorithm representing a 

formation control problem is given by 

 

𝑥 𝑖 =   𝑥𝑖 − 𝑥𝑗 − 𝑟𝑖𝑗  

∀𝑗∈𝒩𝑖

                                        18  

 

In (18), 𝑟𝑖𝑗  defines the preconfigured distance (reference) 

between vehicle i and vehicle j. So, analyzing (18) gives us 

that the group of vehicles will converge to their defined inter-

distances. Note that when 𝑟𝑖𝑗 = 0, it becomes the normal 

consensus problem. Here in this section of the report, talk 

about formation control will only introduce the concept with 

accompanied analysis of the group system under formation 

study. Control design will be discussed in section VI. Along 

with keeping distance between vehicles controlled, one other 

objective is to move the group as a whole following a 

trajectory while maintaining its formation. This problem is 

also can be treated as a formation control problem.  

 

 
Fig. 6.  An example of four different formations. Nodes representing the 

vehicles. 
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Artificial Potential Fields. One big area of research that is 

related to vehicles formations in general is the area of 

Artificial Potential Fields. With many applications elsewhere, 

it has great importance in defining formations of vehicles. One 

other application of artificial potential fields is also related to 

mobile vehicles, but not related to cooperative control, is 

Obstacle Avoidance. It is „artificial‟ because we, designers, 

define them for our own interest. They do not exist by nature. 

A potential field force around vehicle i can be defined like the 

attraction function in (12). One can consider the example 

depicted in [3]. For a swarm, rather than representing desired 

distances like (18), an attraction/repulsion function is defined 

by 

 

𝑥 𝑖 =  𝑔 𝑥𝑖 − 𝑥𝑗  

∀𝑗∈𝒩𝑖

                                          19  

𝑔 𝑥𝑖 − 𝑥𝑗  = − 𝑥𝑖 − 𝑥𝑗   𝑎 − 𝑏 ∙ 𝑒𝑥𝑝  −
  𝑥𝑖 − 𝑥𝑗   

2

𝑐
     (20) 

 

Eq. (20) define an artificial attraction/repulsion mechanical-

like force around vehicle i. To visualize this artificial force, 

figure 7 show the value of force 𝑔 𝑥𝑖 − 𝑥𝑗   versus 

distance  𝑥𝑖 − 𝑥𝑗 . In Fig.7, (20) is evaluated in one-

dimensional space of 𝑥 with 𝑎 = 1,𝑏 = 20,𝑎𝑛𝑑 𝑐 = 0.2. 2D 

of even 3D forces can be imagined.  𝑔 .   force is repulsive 

when vehicles are too close and attractive when far. Also a 

defined force should be selected so that it diminishes for too 

far distances. If strategy of (20) is used, vehicles will converge 

to common region with average position 𝑥 = (1/
 𝒩𝑖  ) 𝑥𝑗∀𝑗∈𝒩𝑖

 . The value 𝑥  makes the center of the swarm. 

All vehicles will have distances from the center with   𝑥𝑗 −

𝑥≤ 𝑏𝑎𝑐2exp−12). Here, (20) is just an example. More 

complicated and sophisticated functions can be studied. 

 

Above discussion of artificial potentials will help to 

understand how formation control could be used. In a 

formation control problem, the desired formation can be 

formulated also as a directed graph 𝒢𝑑 . However, This graph 

is characterized by 1) a set of desired edges ℰ𝑑 , 2) the same set 

of vertices of the group of vehicles 𝒱, and 3) the added 

elements {𝑑𝑖𝑗 } of the desired relative distances for all i and j 

forming edges  𝑖, 𝑗 ∈ ℰ𝑑 . One can visualize the desired 

formation by the weighted graph 𝒢𝑑  with edge weights being 

related to 𝑑𝑖𝑗 . From [5], so a local behavior for a vehicle i can 

be defined by 

 

 

𝑥 𝑖 = −  𝑔 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗  ∙  𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗  

∀𝑗∈𝒩𝑖  ,∀(𝑖 ,𝑗 )∈ℰ𝑑

    21  

 

You can see from (21) that the motion of vehicle i depends 

on the attraction/repulsion force value and the distance error. 

Note that summation is computed with the aid of all 

information available, i.e. desired edges and neighborhood of 

i.  Different artificial forces used lead to different behaviors.  

 

Other tasks of formation control can be added. One is to 

follow a trajectory while maintaining formation. Another task 

can be done for group splitting and rejoining. Shape 

reconfiguration due to obstacles or a higher-level command. 

As formation control is a consensus problem, connectivity 

graph of the group of vehicles should have the same 

conditions of convergence (stability) along with conditions for 

formation convergence.  

 

VI. COOPERATIVE CONTROL DESIGN 

 

This section reserved for the process of designing a 

decentralized control in order to fulfill the different objectives. 

Objectives considered can be formation control or consensus 

algorithm. In previous section, different kinds of cooperative 

control models are discussed with thorough stability and 

convergence analysis.  

 

As the goal is to design identical decentralized controllers in 

each vehicle we have, these local controllers should keep 

high-level objectives met. So a complete view of the problem 

can be visualized in figure 8.  We remind the reader that 

vehicle collective dynamics is defined in (9). The problem has 

no coupling between vehicles. Only the coupling is coming 

from the cooperation in the feedback via the shared 

connectivity graph. Before any further analysis, assumptions 

should be mentioned:  

- Local dynamics of the vehicle (inner loops) is stable.  

- Vehicles have access to other seen vehicles‟ states. So we 

can assume a state feedback control.  

 

In order to have all the shared communication information, 

we set the overall data available utilizing (12) by defining  

 
Fig. 7.  Force vs. distance. It employs both repulsion and attraction effect 

depending on how distant is the vehicle to its neighbor. 
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𝒁 = 𝑮 𝑿                                                           (22). 
 

With 𝒁 =  𝑧1
𝑇 𝑧2

𝑇 ⋯ 𝑧𝑁
𝑇  being group performance 

output associated with all N vehicles. 𝑮 .   is the group 

complete interaction function as all-vehicle form of (12). 

Usually, this interaction function is representing the 

connectivity graph of the group.  

 

One can think that a typical decentralized control input 

should be designed as 

 

𝑢𝑖 = 𝑓 𝑧𝑖 , 𝑥𝑖                                                    23 . 
 

In (23), for vehicle i, the control action will depend on the 

current state of it and on the information available in its 

neighborhood. Note here that 𝑓(. ) is unified for all vehicles. 

So, the control design should be done properly so that can 

accommodate different scenarios. So a full system control 

input can be 

 

𝑼 = 𝑭 𝒁,𝑿   
= 𝑭 𝑮 𝑿 ,𝑿                                                             (24). 

 

The closed-loop system that governs the vehicles can be seen 

as 

 

𝑿 = 𝑨𝑿 + 𝑩𝑭 𝒁,𝑿                                                    (25). 
 

In this section of the report, we will start by introducing 

control input designs for general consensus problems in VI-A. 

Then, more sophisticated control design for formation control 

is presented in VI-B. Section VI-C will give some short 

solution for other cooperative control problems.  

 

 

A. Consensus Control Design 

 

Consensus convergence has been discussed in detail 

previously. Here, further analysis along with design criteria is 

presented. Before further discussion, the dynamics of the 

group of vehicles that we want to control is defined. We can 

use (2) to generally describe the vehicle dynamics. We can 

assume, for simplicity, the N vehicles each having the 

identical dynamics described by (4). We can assume also that 

each vehicle is governed by a single-integrator dynamics. This 

assumption will give us a special case of (4). We assume that 

the output of the vehicle system is the state of it. You should 

note that for the performance output defined in (12) for a 

vehicle i, the neighborhood of this vehicle should not be 

empty. So by this we can suggest a decentralized control input 

to be 

 

𝑢𝑖 = 𝑓 𝑧𝑖 , 𝑥𝑖 = − 𝐾𝑒𝑖                                          26 . 
 

With 𝐾 ∈ ℝ𝑝×𝑚  and 𝑒𝑖  to be some local error evaluation. So, 

the problem is summed up to the point of the proper choice of 

an error that relate to all information available for a vehicle, 

i.e. shared information through the communication network. 

One straight forward selection of the error is the performance 

output. So a suggestion is to have  

 

𝑒𝑖 = 𝑧𝑖 =  𝑔 𝑥𝑖 − 𝑥𝑗  

∀𝑗∈𝒩𝑖

                                     27  

 

However a selection of an interaction function should be 

adopted. An obvious choice is to have it as the weighted 

average found in (16). So, in the same notion, a proposed 

decentralized control could be 

 

𝑢𝑖 = − 𝐾  𝑎𝑖𝑗 ∙  𝑥𝑖 − 𝑥𝑗  

∀𝑗∈𝒩𝑖

                                         28  

 

 
Fig. 8.  Complete picture of the control problem at hand. (a) the decentralized controller gains. (b) Plant (vehicles) dynamics. (c) Sensory information in a 

network 
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You can see here that the control input utilizes all available 

information, i.e. information around the neighborhood. As the 

same analysis of (16), letting 𝑎𝑖𝑗  be weights coming from the 

connectivity graph 𝒢 between the group of vehicles, then by 

some mathematical manipulation, the all-vehicle system 

control becomes 

 

𝑼 = − 𝐼𝑁 ⊗ 𝐾  𝐿 ⊗ 𝐼𝑚 𝑿                                  29 . 
 

With, as mentioned previously, m is number of internal states 

of each vehicle, L is the Laplacian associated with 

connectivity graph 𝒢; and the operation „⊗‟ defined in (11). 

You can see from (29) that it shows a state-feedback 

algorithm; and with feedback  𝐿 ⊗ 𝐼𝑚  𝑿 which is called the 

consensus feedback. So the group closed-loop system could be 

shown by, from (24), (25) and (29),  

 

𝑿 = 𝑨𝑿− 𝑩𝑲 𝐿 ⊗ 𝐼𝑚  𝑿                                            (30). 

 

With the group control gain matrix 𝑲 ∈ ℝ 𝑵×𝒑 ×(𝑵×𝒎), is 

defined by 

 

𝑲 =  𝐼𝑁 ⊗𝐾 =  

𝐾 0 ⋯ 0
0 𝐾 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐾

                       (31). 

 

Remember that for vehicle i, its control input is defined only 

by feeding back available information in the neighborhood of 

the vehicle, i.e. the control is decentralized. You can see this 

in (28). Here we only employed a constant gain control. 

However, you can design other decentralized controller 

systems to have other effects, e.g. integral action. You can see 

more in [1].  

 

B. Formation Control Design 

 

We saw in previous section the utilization of consensus 

feedback to help of convergence of the vehicles. As formation 

control problem is considered to be a consensus problem also, 

quite similar approaches could be made. So, by the same 

notion of (18), a control solution can be chosen as 

 

𝑢𝑖 = −  𝑎𝑖𝑗 ∙  𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗  

∀𝑗∈𝒩𝑖

                                  32  

 

With 𝑑𝑖𝑗  being the inter-distances between vehicles. Looking 

for a graph-based decentralized control design, some 

modification can be made. In [5], a proposal for general 

decentralized control is the same as (28) but with the 

definition of 𝑎𝑖𝑗   

 

𝑎𝑖𝑗 = 𝑔 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗     ,   ∀(𝑖, 𝑗) ∈ ℰ𝑑                33  

 

 

With ℰ𝑑   defined in V-C as the set of edges of the desired 

connectivity graph 𝒢𝑑  . This graph is also characterized also 

by 𝑑𝑖𝑗  as edges weight. So the proposed decentralized control 

can be defined as 

 

𝑢𝑖 = −  𝑔 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗  ∙  𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗  

∀𝑗∈𝒩𝑖  ,∀(𝑖 ,𝑗 )∈ℰ𝑑

   34  

 

The weights 𝑔 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗   can be inserted to the consensus 

feedback defined in VI-A to make modified form of the 

Laplacian. This modification is done by making a weighted 

Laplacian. This weighting can be defined as 

 

𝐿𝑤 =  𝐿1 2  𝑊(𝐿1 2 )𝑇                                            35  
 

With 𝑊 is a diagonal matrix. Diagonal elements are assigned 

as the weights on edges of the desired graph. We can say that 

 

𝑊 = 𝑑𝑖𝑎𝑔(𝑔 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗  )                              36  

 

For all (𝑖, 𝑗) ∈ ℰ𝑑, i.e. we can see that number of diagonal 

elements equal to number edges defined in ℰ𝑑 . As in [5], 𝐿1 2   
is called the incidence matrix.  

 

We can see that from (34) the importance of designing the 

weights. Also, control designed in (34) can work even for 

dynamically changing connectivity graph such that 

convergence conditions (see section V-B) are met. You can 

see that the weights will often be evaluated according to some 

potential field, discussed in V-C.  

 

Other approaches related to formation control are the 

concepts of „leader-following‟ and „virtual-leaders‟. In the 

introduction of a group leader or more, a decentralized control 

solution can be defined as 

 

𝑢𝑖 = −  𝑔1 𝑥𝑖 − 𝑥𝑗 −𝑑𝑖𝑗  

∀𝑗∈𝒩𝑖  

−  𝑔2 𝑥𝑖 − 𝑥𝑗  

∀𝑗∈ℒ 

           35  

 

With ℒ is the set of leader vehicles; and 𝑔2 .   is an interaction 

function defined for behavior with leaders.  

 

Other approach is to put the formation control problem as 

an optimization problem with the goal of minimizing of a cost 

that could be defined as being a formation error. Other 

physical constraints could be added to the optimization 

problem. 

 

C. Other Cooperative Control Designs 

 

Here is just a brief a section for other problems under 

cooperative control. We mainly here give the idea behind 

Flocking control and Rendezvous problem. For flocking 

control, the three rules of Reynolds (see II-B) should be 

fulfilled. So a logical decentralized control solution should be 
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constructed as 

 

𝑢𝑖 = 𝑓1 + 𝑓2 + 𝑓3                                                   36 . 
 

With 𝑓1  could be a potential field function; 𝑓2  could be a 

damping term to regulate velocities with the neighborhood; 

and  𝑓3  is responsible for the global group objective. In a 

rendezvous problem, all vehicles are required to reach a 

specific position simultaneously, i.e. in the same time. So, a 

formulation for this problem suggested in [13] is to define a 

rendezvous region around the desired rendezvous point with 

radius 𝛿 . we define a quantity 𝜌 defined by 

𝜌 =
max⁡( 𝑥𝑖(𝑡𝜌) 

𝜌
 

 

With 𝑡𝜌  is the time of arrival of the first vehicle in the region. 

So, the problem is solve by designing a decentralized control 

such that a desired 𝜌𝑑  be 𝜌 ≤ 𝜌𝑑 ≤ 1. A perfect rendezvous is 

when 𝜌 = 1. 

VII. RESEARCH DIRECTIONS IN COOPERATIVE CONTROL 

 

Here in this brief section, some enlightenment will be given 

about different research directions in cooperative control. So, 

until now, the discussion of cooperative control has been in 

detail. But some other investigation could be done in other 

aspects related to the main problem.  

 

State Estimation.  Throughout the paper, we assumed that 

whenever the connectivity edge is established, the vehicle will 

have the access to other vehicles states. However, in real-life 

problem, the case is often different. As mobile robot 

technology get more and more sophisticated, internal behavior 

and dynamics of a vehicle increases. So, it is logical to expect 

that accessibility to other vehicles state is by no means trivial.  

Other issues could be addressed because the existence of 

noise in the environment. Sensors, actuators and 

communication devices will be interfered by different kinds of 

noises. So, accuracy of states is questioned. A solution to all 

of these problems is to have some kind of decentralized state-

estimators. These estimators will be responsible for evaluating 

the state that will be provided to the decentralized controllers. 

Actually, state estimation problem in cooperative systems 

would have many interesting features.  

 

The estimation goal in a cooperative environment, like our 

multi-vehicle system, is just to have an estimate of the relative 

states  𝑥𝑖 − 𝑥𝑗   rather than the absolute ones 𝑥𝑗  in the 

neighborhood. This estimation could be designed for example 

to utilize some vision processing techniques to estimate the 

inter-distances between vehicles. Other sensors could be 

utilized. Cooperative Estimation is a big branch of research 

that‟s stands alone.  

 

 

Hybrid Control.  The area of hybrid control is booming in 

recent years. The mixture of Control Theory and Computation 

Science proved to have great solution to many discrete-by-

nature dynamic systems, i.e. system with discontinuities in its 

definitions (non-smooth dynamics).  

Switching (discontinuous) phenomena is expected when we 

have discrete elements in the cooperative control problems. 

These elements could be: the non-fixed number of agents 

(scalability) in the system, which makes a non-smooth 

dynamics of the group; another issue is the piecewise 

changing of the group objectives; and also the discontinuities 

in the communication environment. Other issues can be 

imagined.  

 

Stochastic Approaches.  The nature of randomness is 

expected in big systems such cooperative systems. Here we 

are not discussing only the issue of noise. We here specifically 

discuss the switching changing of connectivity graphs. We 

assumed previously that connectivity graph is time-varying. 

However, usually, communication network between vehicles 

is not governed by a known function. So, a stochastic analysis 

can be done to investigate hoe every element in the graph is 

 
Fig. 9.  Three different connectivity graphs.  (a) normal kind of interconnection. (b) there is no connection between vehicles 1 & 3. (c) complete connected graph 

with vehicles seeing each other. 
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changing. As been discussed earlier, the condition of total 

connectivity of the changing graph mentioned previously 

should be ensured. If the graph „jumping‟ structure can be 

modeled as a stochastic process, convergence analysis will be 

easier.  

 

Time-delay Systems.  Another field of research is that 

when we have delays in information exchange between 

vehicles. This problem can not, by any means, to be 

considered trivial. The loss of synchronization will lead to 

many problems specially in executing the decentralized 

control. 

VIII. SIMULATION EXAMPLES 

 

Here in this section, some simulation experiment is done to 

illustrate more about the cooperative control area. Here, we 

are doing simulations in MATLAB environment. We assume 

here a 3-vehicle labeled as 𝑖 = {1,2,3}. So, here, we have N = 

3.  The vehicles move in a 2D plan with identical first-order 

dynamics. We assume having two input, p = 2, 𝑢𝑖 =

 𝑢𝑖
𝑥  𝑢𝑖

𝑦 
𝑇

. Also, the states of each vehicle are defined by 

𝑥𝑖 =  𝑥𝑖
𝑥  𝑥𝑖

𝑦
 
𝑇

 with m = 2. Being the x- and y- coordinates 

in two-dimensional space. So, a complete state space 

representation of a vehicle is 

 

𝑥 𝑖 =  
1 0
0 1

 𝑥𝑖 +  
1 0
0 1

 𝑢𝑖                             37 . 

 

Eq. (37) is equivalent to 𝑥 𝑖
𝑥 = 𝑢𝑖

𝑥  and 𝑥 𝑖
𝑦 = 𝑢𝑖

𝑦
. You can 

picture these vehicles with two independent throttles acting on 

each axis direction with friction on the motion (the first-order 

dynamics). We try different connectivity graphs shown in 

figure 9, with nodes being the vehicles and directed edge 

being interconnection between the three vehicles. For 

example, in figure 9(a), vehicle 1 can see both vehicle 2 and 3. 

Vehicle 2 sees only vehicle 3; and vehicle 3 sees vehicle 1. 

The associated Laplacian with the graph shown in fig. 9(a) is  

 

𝐿 =  
1 −1

2 −1
2 

0 1 −1
−1 0 1

  

 

So the expected behavior of the system should be defined as 

 

𝑿 = − 𝐿 ⊗ 𝐼𝑚  𝑿                                            37 . 
 

With 𝑿 =  𝑥1
𝑥  𝑥1

𝑦
𝑥2

𝑥 𝑥2
𝑦

𝑥3
𝑥 𝑥3

𝑦
 
𝑇

. Let the initial 

positions of the vehicles to 

be 𝑿(0) =  5  7 1 3 10 1 𝑇. This means that in a 2D 

plan with a defined by origin (0,0), vehicle 1 will initially be 

at (5,7). It should be expected, if a stable connection, that all 

vehicles go to the average position among all, i.e. 𝑥𝑖 →
1

3
 𝑥𝑗 (0). Simulation is done for all three different graphs. 

The results are shown in figure 10. Every row of plots show 

reflect graphs (a), (b) and (c) respectively as defined in figure 

9. First column of plots reflects the motion on x-axis; and 

second column reflect motion on y-axis. Each plot shows the 3 

vehicles.  

 

You can see that for graphs in figure 9(a,b), it turned out 

that vehicles converged to their average positions. Even that in 

graph (b) vehicle 1 and 3 do not see each other, but 

convergence occurred because of that the graph is connected, 

i.e. there is a path for information flow between all vehicles. 

Slight difference in speed in graphs (a) and (b) is observed. 

The most unexpected result is that even when the vehicles are 

well connected with each other (complete connection), 

vehicles diverge. Vehicles do reach their average positions. 

This is due to the values of eigenvalues of the Laplacian 

matrix.  This problem has been analyzed and justified in [1]. 

 

IX. CONCLUDING REMARKS 

 

At the end of this long report/paper, cooperative control was 

shown to be an emerging field in research. Cooperative 

control has the nature of multidisciplinary aspect. It involves 

many tools towards the goal of coordinated tasks. It was 

shown that there exist decentralized solutions that can be 

employed in local systems and giving results matching global 

objectives. The powerful utilization of Graph Theory gave 

solid mathematical foundation to model communication 

interconnections. Many techniques under the field of 

cooperative control have interesting findings. The main 

principle of Consensus was set as the standard problem that 

included most of cooperation problems. Special tasks as 

formation control was discussed with detail in relation with 

other aspects in control theory. Applications and research 

status were discussed to give many possible areas of practical 

commercial use. Simulation was done to give a „feeling‟ about 

multi-vehicle systems cooperating together with interesting 

results occurred.  
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APPENDIX 

Here is just the MATLAB code used to generate the 

simulation. 

 

 

N=3; %number of vehicles 

L1=[1 -.5 -.5;0 1 -1;-1 0 1]; %graph (a) 

L2=[1 -1 0;-1 1 0;0 -1 1]; %graph (b) 

L3=[1 -.5 -.5;-.5 1 -.5;-.5 -1 -.5]; %graph (c) 

X0=[5;7;1;3;10;1]; %Initial Positions 

  

LM1=kron(L1,eye(size(A))); 

sys1=ss(-LM1,zeros(6,1),eye(6),zeros(6,1)); 

LM2=kron(L2,eye(size(A))); 

sys2=ss(-LM2,zeros(6,1),eye(6),zeros(6,1)); 

LM3=kron(L3,eye(size(A))); 

sys3=ss(-LM3,zeros(6,1),eye(6),zeros(6,1)); 

  

[y1,t1,x1]=initial(sys1,X0); 

[y2,t2,x2]=initial(sys2,X0); 

[y3,t3,x3]=initial(sys3,X0); 

  

subplot(321);plot(t1,y1(:,1),t1,y1(:,3),t1,y1(:,5)) 

title('x-axis motion - graph (a)') 

subplot(322);plot(t1,y1(:,2),t1,y1(:,4),t1,y1(:,6)) 

title('y-axis motion - graph (a)') 

subplot(323);plot(t2,y2(:,1),t2,y2(:,3),t2,y2(:,5)) 

title('x-axis motion - graph (b)') 

subplot(324);plot(t2,y2(:,2),t2,y2(:,4),t2,y2(:,6)) 

title('y-axis motion - graph (b)') 

subplot(325);plot(t3,y3(:,1),t3,y3(:,3),t3,y3(:,5)) 

title('x-axis motion - graph (c)') 

subplot(326);plot(t3,y3(:,2),t3,y3(:,4),t3,y3(:,6)) 

title('y-axis motion - graph (c)') 

 
Fig. 10.  Simulation Results.. Rows: results of each graph (a), (b) and (c). Columns: results on motion x- and y- axes. 


