5th Workshop on Industrial System & Control, KFUPM, Dhahran 24-25 November 2008

Design of a Rotational Speed Measurement System using Machine Vision for Quality Testing

Mohammad Shahab, Master Student

Ibrahim Al-Safadi, Master Student

Introduction

24-25 Nov 2008

5th WISC, KFUPM, Dhahran

Outline

- Problem Statement
- Project Objectives
- Design Alternatives
- Design Process
 - Image Acquisition
 - Algorithm
 - Improved Algorithm
 - User Interface
- Statistical Analysis
- Recommendations
- Conclusion

Problem Statement

- Local industrial plant (ACs)
- Quality Control Problem:
 Testing fan speed
 No contact with process
- Existing System:
 - ACs on conveyor belt: 0.5 ft/s
 - Fan: 4 blades, Black, Metal

Project Objectives

- 1. Design of a non-contact automatic rotational speed measurement system
- 2. Engineering analysis and evaluation of the system
- 3. Development of a software package
- 4. Explore new applications of image processing

Design Alternatives (pros & cons)

- Electromagnetic Tachometer
- Optical Tachometer
- Machine Vision:
 - No contact
 - No interference: mark
 - Innovative
 - Intergrability with inspection

Design Process

Image Acquisition

 Selection Criteria: selection depends on frame rate which depends on algorithm used

- 1. Frame Rate
- 2. Resolution: quality, processing
- 3. Communication Speed: FireWire, USB

Project's Experiment

- For the **prototype**:
 - Genius® Slim 320
 - USB 2.0 WebCam
 - 30 fps

- Average frame rate measured in the lab = 20 fps
- blur after 60 RPM
- 12V DC motor was used to provide speeds of 0-200 RPM

• Software used is LabVIEW 8.0

Project Apparatus

24-25 Nov 2008

Camera Output, example

Algorithm

- Major Concept: Count *blade crossings* in unit time
- Blade crossings are identified by the technique of Edge Detection
- Acquire preset number of consecutive frames stored temporarily with their time stamps.
- Image processing is executed on each frame per iteration.
- In each iteration, *Zooming* is done on an appropriate area of specific coordinates

Algorithm: Zooming Characteristics

• Importance:

- Zoom area designed not to contain two sides of one blade in any frame.
- Avoid Ambiguity.
- Reduce Processing and Computation, less pixels

Edge Detection

• Edges are detected along a line.

Algorithm: Edge Detection

	Gray level profile	
6	1st Derivative	
	2nd Derivative	

24-25 Nov 2008

5th WISC, KFUPM, Dhahran

Extracting Edge Information

- After edge detection, the following information is at hand:
 - 1. Number of edges along the line
 - 2. Pixel Coordinates of each edge
 - 3. Edge Polarity (-1,1)
- Given the zoomed area, only three cases are logically possible to appear:
 - 1. Only an upper edge of a blade
 - 2. Only a lower edge
 - 3. Two adjacent edges of consecutive blades (Two edges of same blade never appears due to zoomed area)

Algorithm: Steps

- A. The blade *counter* starts only when the upper edge of a blade is detected.
- B. Afterwards, the blade counter will not increment until a frame containing more than one edge (i.e. adjacent sides of consecutive blades) is detected.
 Summary: Counter is incremented when new blade comes.

C. The algorithm proceeds to the next level after *m* blades have been counted. Counter stops after *m* blades.

Speed Calculation

• We're interested in the two time-stamps of the frames corresponding to the **starting** and **ending** of the blade counter.

$$RPM = \frac{60 \cdot m}{N \cdot \Delta t}$$

Where N is number of fan blades (parameter), here =6 *m* is the number of blades passed (parameter), by developer Δt is the time difference, time-stamps difference

Algorithm Deficiency

Improved Algorithm

- Latching Coordinates
 - When the blade counter starts, the **coordinates** of the corresponding edge pixel are latched (stored).

 Every Subsequent blade edge detected has its coordinates compared with the latched ones.

- Counter terminates when the difference in the comparison falls below a predefined threshold.

Speed Calculation

• Hence a tradeoff exists between accuracy and average number of frames processed.

$$RPM = \frac{60 \cdot m}{N \cdot \Delta t}$$

Where *m*, the number of blades passed, is a **variable output**, not a fixed parameter as in the simple algorithm.

Statistical Analysis

Statistical Analysis

- Data Collection: 10,20,...,40 for each program.
 - Each experiment collected 100 trials

(Mean, Var)	10 Rpm	20 Rpm	30 Rpm	40 Rpm
Method 1	(10.1, 0.647)	(20.8, 1.52)	(30.2, 2.31)	(40.5, 3.69)
Method 2	(10.2, 0.714)	(21, 2.29)	(29.8, 2.27)	(40.9, 2.5)

– No Bias in Mean.

- Variance increases as speed increases due to low frame rate quality.

LabVIEW program, partial

5th WISC, KFUPM, Dhahran

User Interface

24-25 Nov 2008

User Interface

24-25 Nov 2008

Recommendations

- System Integration: Adding automatic inspection.
- Linking process to plant network.
- More sophisticated Algorithms

THANK YOU

Questions R Welcomed

5th WISC, KFUPM, Dhahran

24-25 Nov 2008