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Abstract  —  Identification of a practical process, 
especially if unstable, is challenging as its model is 
generally stochastic and nonlinear. In this work we 
consider a class of unstable processes where the model is 

identified in a closed-loop operating regime. Important 
issues in identification are addressed, namely: 
identification scheme, the closed loop identification of 

unstable plants, choice of sampling period, and constraints 
on the estimated model parameters. Further the structure 
of the identified model may not be identical to that of the 

physical system due to noise artifacts, and inability to 
capture faster dynamics. Generally least-squares 
identification is employed to estimate the parameters of the 

system wherein all the coefficients of numerator and the 
denominator coefficients of system transfer function are 
estimated. In many practical system there are constraints 

on the model parameters. The identified coefficients using 
the conventional scheme may not obey the constraint.  In 
this work a novel constrained least-squares identification 

scheme is proposed where in a priori known structural 
constraint is factored in parameter estimation.  This 
scheme is evaluated on a physical magnetic levitation 

system. 

Index Terms  —  Systems Identification, Closed-loop 
Identification, Constrained Least-Squares, MAGLEV 

I. INTRODUCTION 

Identification of a practical process is challenging as its 

model is generally stochastic, complex and nonlinear [1-

6]. The identified model must be simple and linear for 

designing a controller and further the controller designed 

using the identified model must meet robustness and 

performance requirement when implemented on the 

actual process.  

In this work we consider a class of unstable processes 

where the model is identified in a closed loop operating 

regime. Important issues in identification are addressed, 

namely 

• Identification scheme  

• The closed loop identification of unstable 

plants 

• Choice of sampling period  

This paper is organized as follows: Section II gives an 

overview of the paper, Section III describes the practical 

evaluation system, and experimental procedure, Section 

IV discusses the proposed scheme its evaluation, and 

finally Section V gives conclusion. 

 

II. OVERVIEW OF PROPOSED WORK 

An overview of various issues in identification are 

investigated, namely, identification scheme, closed-loop 

identification, and choice of sampling period.  

 

A. Identification Scheme 

Generally least-squares identification is employed to 

estimate the parameters of the system, namely the 

coefficients of the numerator and the denominator 

polynomials of the system transfer function. In many 

practical systems, there is structural constraint on the 

parameter which is known a priori from the physical 

laws governing the system.  Let us consider the 

following examples:  

 In a liquid level system, position control system, 

aerospace system, the plant may be unstable with a 

pole at the origin.  

 In magnetic levitation system, the there are pair of 

poles which are located symmetrically about the 

imaginary axis with one stable pole and the other 

unstable pole. 

As the consequence the parameters denominator 

coefficients are constrained such that a pole of the 

system transfer function is at the origin or two poles are 

located symmetrically about the imaginary axis.  

There are two approaches for identification of these 

systems  

 Unconstrained identification approach: The a 

priori known constraint on plant parameters is 

ignored. The conventional recursive least squares 

method is employed to estimate all the parameters.  

 Constrained identification approach: The a priori 

known constraints on the parameters are factored in 

the identification scheme [1] 

Using the first approach where no constraint is imposed 

on the plant parameters, the estimated parameters may 

not ensure that the estimated model meet the structural 

constraint because the input may not be sufficiently rich 

and the output is noisy. In this work, constrained least-

squares approach is employed.  

 

B. Closed-loop Identification 

Identification of unstable system must be performed in 

closed-loop operating regime. The parameters of the 

open loop plant are estimated from the input-output data 

generated from the plant operating in the closed loop.  



As a result of feedback there is a correlation between the 

input and the output data because of noise input [4]. 

This correlation may cause in inaccurate parameter 

estimates when conventional least-squares identification 

scheme is employed and the input is sufficiently rich. 

 

C. Choice of Sampling Period 

The choice of sampling period is crucial in practical 

system identification as the data is generally noisy and 

the model is complex and nonlinear. Sampling 

frequency should be greater than twice the bandwidth 

for system identification. As faster data acquisition 

systems are available in recent times, one may be 

tempted use a very high sampling frequency. Using a 

very large sampling frequency (compared to twice the 

bandwidth) may pose the following problems:  

 The identified model will capture the noise model 

as well 

 The identified parameter will be such that the poles 

close the imaginary axis will drift toward the origin. 

For example in magnetic levitation system the poles 

on either side of the origin will drift toward the 

origin where as system with poles close to the 

imaginary axis will be fused together at the origin. 

III. MAGNETIC LEVITATION SYSTEM & EXPERIMENT 

The proposed scheme was evaluate on a physical 

system. The physical system was a Feedback
®

 magnetic 

levitation system (MAGLEV). See the figure 1 below. 

Identification and control of the magnetic levitation 

system has been a subject of research in recent times in 

view of its applications to transportation system, 

magnetic bearing used to eliminate friction, 

magnetically levitated micro robot system, magnetic 

levitation based automotive engine valves [3,7,8]. 

 
Fig. 1. MAGLEV System and Free-body diagram of the 
system 

 

The model of the MAGLEV system is unstable and 

nonlinear [3] 

 

𝑚𝑥 = 𝑚𝑔 −
𝐾𝑐𝑉

2

𝑥2                              (1) 

In (1), 𝑥 is the metal ball position being the system 

output, 𝑉 is the system input as the voltage. Other 

parameters are 𝑚 as the mass of the metal ball, 𝐾𝑐  as 

constant for magnet circuit, and 𝑔 is the gravitational 

acceleration of 9.8 m/s
2
. A free-body diagram is shown 

also in figure 1. We can linearize the system equation at 

operating point of (𝑉0, 𝑋0) to have the linear model in 

(2)       

𝑥 =
2𝐾𝐶𝑉0

2

𝑋0
3 𝑥 −

2𝐾𝐶𝑉0

𝑋0
2 𝑉 

⟹ 𝑥 = 𝛼𝑥 − 𝛽𝑉                             (2)          

 

So we can have the transfer function for the system as 

𝑦(𝑠)

𝑢(𝑠)
=

𝛽

𝑠2−𝛼
                                                (3) 

Where y as the position (output), and u as the voltage 

(input). The poles, p, of the plant are real and are 

symmetrically located about the imaginary axis 

 

𝑝 = ± 𝛼 

Furthermore, we can have the discrete-time model of the 

system. Eq. (4) shows the discrete transfer function. 

𝑦(𝑧)

𝑢(𝑧)
=

𝑏1𝑧
−1+𝑏2𝑧

−2

1+𝑎1𝑧
−1+𝑎2𝑧

−2
                         (4) 

With 𝑧−1 is the unit delay operator in z-domain.  

Experiment. We can see that the system we deal with is 

unstable. So it is expected that the experiment is done 

while operating on closed-loop. Closed-loop 

identification is described in figure 2. To identify the 

plant model, input-output data is processed.  

Fig. 2. Closed-loop Identification 

 

Model of the system was identified in closed-loop using 

data acquired by National Instrument’s DAQ devices. 

The analog controller on-board is a lead compensator. In 

order to excite all modes of the system, a rich (in 

frequency) reference input should be applied to the 

system [2]. The reference input was chosen to be a rich 

probing signal, specifically random binary sequence. 

The set-point in our experiment is -1. Figures 3 & 4 

Reference 



below show the output & input data, respectively. 

Experiment is done to collect 45,000 data points. An 

appropriate sampling period was determined by 

analyzing the input-output data for different choices of 

the sampling periods. See figure 5 for partial output data 

for different sampling periods. A sampling period of 5 

ms was found to be the best. The sampling frequency 

must be sufficiently small to capture the dynamics of the 

system and not the noise artifacts.  

 

 
Fig. 3. Output (position) data 

 

 
Fig. 4. Input (voltage) data 

IV. IDENTIFICATION PROCESS 

First, we apply the identification in the conventional 

way. With an ARMA model of 

𝑦 𝑘 + 𝑎1𝑦 𝑘 − 1 + 𝑎2𝑦 𝑘 − 2 = 𝑏1𝑢 𝑘 − 1 +
𝑏2𝑢 𝑘 − 2                                           (5) 

 

You can see that (5) is the inverse Z-transform of (4). 

With available data, conventional least-squares method 

is used to find the values of parameters of 𝑎1, 𝑎2, 𝑏1, 

and 𝑏2. The result of the identification was found to be 

𝑦(𝑧)

𝑢(𝑧)
=

−2.9×10−6𝑧−1+0.0001233 𝑧−2

1−1.837𝑧−1+0.8374𝑧−2
        (6) 

You can see in figure 6, that the estimated output 

matches the actual output. You can see that the poles of 

the system are not as expected, as at least one discrete 

pole should appear outside the unit circle.  
 
Fig. 6. Estimated (magenta) and Actual (green) output with 
conventional least-squares methods. 

 

In this work, a novel identification scheme using a 

priori known structural constraint on system model is 

proposed. This scheme is evaluated on the MAGLEV 

system. We formulate the problem as a Nonlinear 
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Fig. 5. Output data (partial) with different sampling periods 
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Optimization problem. See eq. (7) as it shows the 

complete mathematical formulation of the constrained 

least-squares method. 

 

min𝜃 𝑌 − 𝐴𝜃 2

𝑠. 𝑡.
𝑓 𝜃 ≥ 0

𝑔 𝜃 = 0                                                 (7) 

 

With 𝑌 as the vector of all output data, 𝐴 is the data 

matrix and 𝜃 is the unknown parameters vector. You can 

see that the optimization problem is subject any a priori 

information of the system translated into functions 

of 𝑓 𝜃  , and 𝑔 𝜃   as inequality and/or equality 

constraints, respectively. In the specific case of the 

maglev system, we have the information of the behavior 

of the poles, namely, 

 

𝑎2 = 1,       𝑎1 > 2 

 

The above constraints describe two reciprocal discrete 

poles (1
st
 constraint), with one of them is unstable (2

nd
 

constraint). The optimization problem is solved 

numerically. It is been found that for different data 

portions the poles of the system have almost the same 

result. The resulted system model is found to be of the 

form of 

𝑦(𝑧)

𝑢(𝑧)
=

𝑏1𝑧
−1+𝑏2𝑧

−2

1−2𝑧−1+𝑧−2
               (8) 

    

Figure 7 shows an example of the estimated and actual 

output by the constrained least-squares. 

Fig. 7. Estimated (red) and Actual (blue) output with 
constrained least-squares method. 

 

V. CONCLUSION 

The proposed scheme based on constrained least-squares 

approach is promising. The result obtained using 

unconstrained approach was unsatisfactory as the 

estimated model did not meet the structural constraint.  

The choice of sampling period is crucial to 

identification. It is shown that the sampling frequency 

must be small enough to capture the dynamical behavior 

and not capture the noise artifacts. The plots of the 

actual system and the identified model were close.  

 

ACKNOWLEDGEMENT 

The authors would like to thank and acknowledge the 

support of King Fahd University of Petroleum and 

Minerals for this work. 

 

REFERENCES 

[1] S. L Kothare, Y Lu, J. A Mandler, “Constrained system 

identification for incorporation of a priori knowledge”, US 

Patent App 10/385,915, 2003 

[2] System Identification: Theory for the User (2nd Edition) by 

Lennart Ljung, Publisher: Prentice Hall PTR; 2nd edition, 

1998, ISBN: 0136566952 

[3] Galvão, R. K. H., Yoneyama, T., Araújo, F. M. U., 

Machado, R. G. “A Simple Technique for Identifying a 

Linearized Model for a Didactic Magnetic Levitation System”. 

IEEE Transactions on Education, v. 46, n. 1, p. 22-25, 2003. 

[4] J.R.Raol, G.Girija, and J. Singh, Modelling and Parameter 

Estimation, IEE Control Engineering Series 65, 2004: The 

Institution of Electrical Engineers, ISBN 0 86341 363 3 

[5] Oliver Nelles, Nonlinear Identification, Springer Verlag, 

2001, ISBN 3-540-67369-5 

[6]Pintelon, R. (Rick), Schoukens, Johan, System 

identification : a frequency domain approach, IEEE Press 2001  

[7] K.Peterson, J.W.Grizzle, and A.G.Stefanpolou, Nonlinear 

magnetic levitation of automotive engine valves 

[8] David Craig and Mir Behrad Khamesee, “ Black box 

model identification of a magnetically levitated microrobotic 

system” Smart Materials and Structures, 16, 2007, pp.739-747 

 

 

 

 

 

Mohammad Shahab is a graduate Student at the Systems 

Engineering department in King Fahd University of Petroleum 

& Minerals. He received his B.Sc. degree, with 2nd Honors, in 

Control & Instrumentation Systems Engineering from the 

same department in 2007. His research interests include: 

Process Control, Robotics, and Cooperative Control. 

(moh_shahab@hotmail.com) 

 

Rajamani Doraiswami is a professor emeritus of the 

University of New Brunswick, Fredericton, NB, Canada. 

(dorai@unb.ca) 

 

22 22.05 22.1 22.15 22.2 22.25 22.3 22.35 22.4 22.45

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5
actual & estimated output

time (s)

 

 

Original

Estimated


