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OUTLINE

1. Bayes Filtering Review

2. Kalman Filter Review

3. Unscented Kalman Filter

4. Mixed Filter

5. Cooperative Localization

6. Particle Filter Review

7. PF Variations

8. Resampling Techniques

9. KF Simulation

10. PF Simulation
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BAYES FILTER

 Recall the recursive equation

Observation Model
Motion Model Previous ‘Belief’

Probability Density 
(distribution) of the 

robot state 

x = pose of robot

o = robot observation (sensor information)

a = robot action (odometry information)
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KALMAN FILTER

 At every Step

Kalman Gain

Motion Update (Prediction)

Covariance of States:
Uncertainty at each step

Measurement Update (Correction)

Covariance Matrices:
Uncertainties in Actuators & Sensors
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KALMAN FILTER

At each step :

 Computation is only one evaluation of the equations (no 

particles)

 Belief is Gaussian (Normal), described only by Mean and 

Covariance

However,

 Applied to linear models (robot is not)

 Environment is dynamic and not gaussian
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UNSCENTED KALMAN FILTER

 We introduce the concept of „Sigma-Points‟

 They approximate the belief distribution

 they capture the most important statistical properties of the 

prior belief
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UNSCENTED KALMAN FILTER

 For 3-state pose, we should choose 2*3+1=7 sigma-points

At each step,

Number of states

Covariance of States:
Uncertainty at each step

1 point

3 points

3 points

Spread Factor

Weights are chosen also (see paper)
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UNSCENTED PARTICLE FILTER

1. At each step for each particle:

1. Calculate the Sigma Points

2. Apply Kalman Update Equations

3. Normalize and get mean and covariance for each particle

2. Continue the PF as known before

 It looks like it has more computation, but if particles number is 

small it will reduce computation and increase accuracy

J
u
n
e
 2

0
0
8



UNSCENTED PARTICLE FILTER

Yellow is the particles

Orange is sigma points
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MIXED PARTICLE FILTER

1. For p% of the N particles:

 Apply Unscented Particle Filter

2. For (100-p)% of the particles:

 Apply the normal particle filter

3. Normalize all weights from 1,2

4. Resampling

“A Mixed Fast Particle Filter”

Fasheng Wang, Qingjie Zhao, and Hongbin Deng
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MIXED FILTER

Yellow is the particles

Orange is sigma points
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COOPERATIVE MULTI-ROBOT LOCALIZATION

 In Peking University, China, they suggested the concept of 

“Dynamic Object Reference”

 Dynamic Object Reference:

 A human can self-localize himself by putting, for example, special 

building as a reference (static)

 However in Mobile Robots & Dynamic Environment, we need to have 

a Dynamic Reference

 This dynamic reference object can be detected by all robots

 For one robot: reliable self-localization => reliable object position

 Normally, the dynamic object is the ball. So, “ball localization” is 

involved
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DYNAMIC REFERENCE OBJECT

 So, for Multi Robots: they can all exchange a „team message‟

 Object Position, Robot ID, Time, and Position Probability

 For example

 Then, Robot B can be reliable for the object position
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COOPERATIVE MULTI-ROBOT LOCALIZATION

 Common approaches for applying cooperation in multiple robots normally 

have the assumption that robot can identify other robots

 However, Robots only need to recognize the object instead of identify all the 

robots in the team

 Algorithm: Using Bayes Filter, like Particle Filter
 After performing the usual PF

 If robot B is reliable, then robot A belief about its own position would be modified 

by

Normal Robot Self-Localization

Some Evaluation between the

estimated object position and the

estimated robot position The reliable robot probability
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COOPERATIVE ROBOT LOCALIZATION

Reliability HIGH
Reliability LOW

Robot ‘A’

Robot ‘B’
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PARTICLE FILTER

 Used where models are non-linear and noise is 

non-Gaussian.

 Use Particles to represent the distribution
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SEQUENTIAL IMPORTANCE SAMPLING

 Basis for most Monte Carlo Filters

 Technique for implementing recursive Bayesian 

Filter by Monte Carlo Simulation.

 Represent a set of required Posterior Probability by 

a set of random samples with weights

 As the number of samples becomes very large, the 

SIS approach optimality.
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SEQUENTIAL IMPORTANCE SAMPLING
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SEQUENTIAL IMPORTANCE SAMPLING

 The weights are chosen based on the principle of 

importance sampling.

 difficult to draw samples

 (q: importance density easy to draw 

samples where

 If samples are drawn according to q then weights 

are defined as 
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SEQUENTIAL IMPORTANCE SAMPLING

 If we choose q as                                         

then we can update the sample using existing 

samples + new state
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DEGENERACY PROBLEM

 All but one particle will have negligible weight

 This makes huge computation effort for samples 

whose contributions is almost zero.

 It can be solved either by good choice of 

importance function or resampling

 Good choice of importance function requires 

evaluation of the integrals and drawing samples 

from P, which is not possible in most cases.
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SO…

 So at each time step

 For each particle:

 Use motion model to predict new pose (sample from 

transition priors)

 Use observation model to assign a weight to each 

particle (posterior/proposal)

 Create A new set of equally weighted particles by 

sampling the distribution of the weighted particles 

produced in the previous step.
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RESAMPLING

 The basic idea of resampling is to eliminate 

particles with small weights and concentrate on 

particles with large weights.

 Resample from: 

 Weights are reset sN/1
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RESAMPLING

J
u
n
e
 2

0
0
8



RESAMPLING

 Simple to implement

 O(Ns)

 Minimize the variation.

Systematic Resampling
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PARTICLE FILTER
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PROBLEMS WITH RESAMPLING

 Limits the opportunity to paralelize since all 

particles need to be combined.

 Loss of Diversity among samples, we have many 

repeated points. (sample impoverishment).

 In the case of very small noise, all the particles will 

collapse to a single point within a few iteration.

J
u
n
e
 2

0
0
8



OTHER RESAMPLING TECHNIQUES

 Resample-move algorithm avoid sample 

impoverishment through rigorous manner that 

ensures particles asymptotically approximate 

samples from posterior.

 Regularization less rigorous
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SAMPLING IMPORTANCE RESAMPLING

 Choice of
 Importance density to be the 

prior density

 Resampling step to be 
applied at every index

 Independence of 
measurements
 Inefficient and sensitive to 

outliers

 Loss of diversity due to 
resampling

 Easy evaluation of 
importance weight and easy 
sampling of importance 
density.
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PARTICLE FILTERS – EXAMPLE 1
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PARTICLE FILTERS – EXAMPLE 1

Use motion model to predict new pose

(move each particle by sampling from the transition prior)
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PARTICLE FILTERS – EXAMPLE 1

Use measurement model to compute weights

(weight:observation probability) 
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PARTICLE FILTERS – EXAMPLE 1

Resample
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PARTICLE FILTERS – EXAMPLE 2

Initialize particles uniformly
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PARTICLE FILTERS – EXAMPLE 2
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PARTICLE FILTERS – EXAMPLE 2
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PARTICLE FILTERS – EXAMPLE 2
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PARTICLE FILTERS – EXAMPLE 2
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PARTICLE FILTERS – EXAMPLE 2
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CONTINUOUS STATE APPROACHES  

EG. KALMAN

 Requirement that the initial state is known.

 Inability to recover from catastrophic failures 

 Inability to track Multiple Hypotheses the state (Gaussians 

have only one mode)

 Perform very accurately if the inputs are precise 

(performance is optimal with respect to any criterion in the 

linear case).

 Computational efficiency.

J
u
n
e
 2

0
0
8



DISCRETE STATE APPROACHES

EG. PARTICLE

 Ability (to some degree) to operate even when its initial pose 

is unknown (start from uniform distribution).

 Ability to deal with noisy measurements.

 Ability to represent ambiguities (multi modal distributions).

 Computational time scales heavily with the number of 

possible states (dimensionality of the grid, number of 

samples, size of the map).

 Accuracy is limited by the size of the grid cells/number of 

particles-sampling method.

 Required number of particles is unknown
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PARTICLE FILTER ADV. & DISADV.

 Can deal with non-
linearities.

 Can deal with non-
Gaussian noise

 Can be implemented in 
O(Ns)

 Mostly parallelizable

 Easy to implement

 PFs Focus adaptively on 
probable regions of state 
space

 Included random element, 

they only convergence to 

posterior pdf if Ns  inf.

 If the assumptions of 

Kalman filters are valid, no 

PF can outperform it.

 Depending on the dynamic 

model, Gaussian sum filters, 

uncented kalman, or 

extended Kalman may 

produce satisfactory results 

at lower computation cost.
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SIMULATION KALMAN FILTER – REAL PATH
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SIMULATION KALMAN FILTER – ESTIMATED

PATH
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SIMULATION KALMAN FILTER – REAL

ESTIMATED PATH
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STATE STATE EVOLUTION

J
u
n
e
 2

0
0
8



STATE ESTIMATE EVOLUTION
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STATE ESTIMATE EVOLUTION
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PARTICLE FILTER

J
u
n
e
 2

0
0
8



PARTICLE FILTER
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PARTICLE FILTER
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PARTICLE FILTER
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CODE…
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RESULTS
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