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BAYES FILTER

Recall the recursive equation
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Bel(x) = }'7P(0k|xk] fP(xk|xk—1:ak—l)Bel(xk—l)dxk—l

= 30X

Observation Model

Motion Model Previous ‘Belief’

X = pose of robot

0 = robot observation (sensor information)
a = robot action (odometry information)

Probability Density
(distribution) of the
robot state



KALMAN FILTER

At every Step

Motion Update (Prediction)

Pg = Apg_lAT + Qr1.
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e - A — Measurement Update (Correction
:l'ﬁ: —ﬂ_’fk —I—ka(zk—Hﬂ’?k )(/ P ( )
P =(I-KiH)

Ky =P, HT(HP H” + R;) 'Kalman Gain

Qk—1.

Ry

Covariance Matrices:
Uncertainties in Actuators & Sensors

P Covariance of States:
k Uncertainty at each step



KALMAN FILTER

At each step :

Computation is only one evaluation of the equations (no
particles)

Belief is Gaussian (Normal), described or/y by Mean and
Covariance

However,

Applied to linear models (robot is not)
Environment is dynamic and not gaussian

800¢ aunr



UNSCENTED KALMAN FILTER

We introduce the concept of ‘Sigma-Points’

They approximate the belief distribution

they capture the /most important statistical properties of the
prior belief

sigma points ~—__
covariance ’
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UNSCENTED KALMAN FILTER

For 3-state pose, we should choose 2*3+1=7 sigma—points%
At each step,
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Xog =X 1 point
X, =x+ (\/(%_I_/\)Pm);e 3 points
X, =X — (\/(‘”f:;c + A)PT) ~ 3 points

n
x Number of states Weights are chosen also (see paper)

P Covariance of States:
X Uncertainty at each step

A Spread Factor



UNSCENTED PARTICLE FILTER

At each step for each particle:
Calculate the Sigma Points
Apply Kalman Update Equations

Normalize and get mean and covariance for each particle
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Continue the PF as known before

It looks like it has more computation, but if particles number is
small it will reduce computation and increase accuracy



UNSCENTED PARTICLE FILTER

Yellow is the particles
IS sigma points
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MIXED PARTICLE FILTER

For p% of the N particles:
Apply Unscented Particle Filter

For (100-p)% of the particles:
Apply the normal particle filter

Normalize all weights from 1,2

Resampling
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“A Mixed Fast Particle Filter”
Fasheng Wang, Qingjie Zhao, and Hongbin Deng




MIXED FILTER

Yellow is the particles
IS sigma points
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COOPERATIVE MULTI-ROBOT LOCALIZATION

13

In Peking University, China, they suggested the conceptof

800

Dynamic Object Reference:

A human can self-localize himself by putting, for example, special
building as a reference (static)

However in Mobile Robots & Dynamic Environment, we need to have
a Dynamic Reference

This dynamic reference object can be detected by all robots
For one robot: reliable self-localization => reliable object position

Normally, the dynamic object is the ball. So, “ball localization”is
Involved



DYNAMIC REFERENCE OBJECT

So, for Multi Robots: they can all exchange a ‘team message’
Object Position, Robot ID, Time, and Position Probability

For example

(a) t=t1

(b) t=t2
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Calculated Position | Robot ID | Time | Position Possibility
(2388, 700) A ty 0.71
(2264, 658) B t1 0.92
(2530, 710) FE 1 0.86
(2368, 803) A ) 0.81
(2401, 801) B ) 0.91
(2103, 743) ' ) 0.32
(2215, 725) D to 0.43

Then, Robot B can be reliable for the object position




COOPERATIVE MULTI-ROBOT LOCALIZATION

Common approaches for applying cooperation in multiple robots normally
have the assumption that robot can identify other robots 5

However, Robots only need to recognize the object instead of identify aIEthe
robots in the team

Algorithm: Using Bayes Filter, like Particle Filter

After performing the usual PF
If robot B is reliable, then robot A belief about its own position would be modified
by

Bel(x%) «|Bel(x®)-|P(x%|obj)|- Bel(x?)

_~

-
Some Evaluation between the
estimated object position and the

estimated robot position The reliable robot probability

Normal Robot Self-Localization




COOPERATIVE ROBOT LOCALIZATION

Bel(x{) « Bel(x{") - P(x%|obj) - Bel(x})
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Robot ‘A’

Reliability Reliability




PARTICLE FILTER

Used where models are non-linear and noise is :
non-Gaussian. “
Use Particles to represent the distribution

1
(X | ylt yt‘x j ‘Xt 1= (Xt—l =17 | y1:t—1)dz
Cy Z \
. ‘ \ Motion model \
. Observation model Proposal distribution
| L (=weight)




SEQUENTIAL IMPORTANCE SAMPLING

Basis for most Monte Carlo Filters

Technique for implementing recursive Bayesian
Filter by Monte Carlo Simulation.

Represent a set of required Posterior Probability by
a set of random samples with weights

As the number of samples becomes very large, the
SIS approach optimality.
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SEQUENTIAL IMPORTANCE SAMPLING

{x{;} : set of support points (samples, particles)
=1 040 NG
(whole trajectory for each particle!)
wi : associated weights, normalized to ¥, w} =1
Then:

N
N

p(Xi]z15) & ) wWi8(Xox — Xp.)
i=1

(discrete weighted approximation to the true posterior)
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SEQUENTIAL IMPORTANCE SAMPLING

The weights are chosen based on the principle of
Importance sampling.

p(z) < «() difficult to draw samples

7' ~q(@),i=1,...,N, (Q: Importance density easy to draw
samples where

Ns
p(zr) ~ Zw‘ﬁ(m — z)
i—1

If samples are drawn according to g then weights
are defined as

(z') wi o P(Xo,x |21:x)

(@) (X, 21:)

w' o
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SEQUENTIAL IMPORTANCE SAMPLING

|f we ChOOse q as q(Xo:k |Z1:%) = ¢(X|X0:6—1,2Z1:%)¢(X0:k—1|Z1:k—1)

then we can update the sample using existing
samples + new state

ALGORITHM 1: SIS PARTICLE FILTER
({3 wi iy ] = SIS [{x}_y, wi_y }ilty, 2]
« FORi=1:N;,
— Draw x}, ~ q(xx|x}_,,2k)

— Assign the particle a weight, wi, according to (48)
« END FOR
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DEGENERACY PROBLEM

All but one particle will have negligible weight

This makes huge computation effort for samples
whose contributions is almost zero.

It can be solved either by good choice of
Importance function or resampling

Good choice of importance function requires
evaluation of the integrals and drawing samples
from P, which is not possible in most cases.
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SO...

So at each time step
= For each particle:

= Use motion model to predict new pose (sample from
transition priors)

= Use observation model to assign a weight to each
particle (posterior/proposal)

= Create A new set of equally weighted patrticles by
sampling the distribution of the weighted particles
produced in the previous step.
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RESAMPLING

The basic idea of resampling is to eliminate

particles with small weights and concentrate on
particles with large weights.

N
Resample from: p(xelzin) & Y wid(xk - xi)
Weights are reset 1/N

S
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RESAMPLING

i=1,...,N=10 particles

a o O O o o0 O

(8]

xONTY
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RESAMPLING

Systematic Resampling
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o Simple to implement

ALGORITHM 2: RESAMPLING ALGORITHM

o O(NSs) [{x]", wh, ¥}, ] = RESAMPLE [{x{, wf }¥]
« Initialise the CDF: ¢; =0
o Minimize the variation. - ¥oni=2:Y ,
— Construct CDF: ¢; = ¢i—1 + wj,
« END FOR
o Start at the bottom of the CDF: ¢ = 1
e Draw a starting point: uq ~ U [U, Ns_l]
« FOR j=1: N,
— Move along the CDF: u; = uy + N;1(j — 1)
— WHILE u; > ¢;
®x1=1+1
— END WHILE
— Assign sample: xi* =xi
— Assign weight: w] = N;!
— Assign parent: i =i
« END FOR




PARTICLE FILTER

ALGORITHM 3: GENERIC PARTICLE FILTER

[{x}, wi Y] = PF [{x}_,,wj_y }icy, 2]
« FOR i=1:N,
— Draw x| ~ q(x|x}_,,2;)
— Assign the particle a weight, wi, according to (48)
« END FOR
« Calculate total weight: ¢+ = SUM [{wi } 2]
« FORi=1:N,
— Normalise: w} =t~ w}
« END FOR
« Calculate fﬂ}} using (51)
. IF N.;; < Ny
— Resample using algorithm 2:
« [{xk, wi, —} Y] = RESAMPLE [{xg, wj}Y,]
« ENDIF
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PROBLEMS WITH RESAMPLING

Limits the opportunity to paralelize since all
particles need to be combined.

Loss of Diversity among samples, we have many
repeated points. (sample impoverishment).

In the case of very small noise, all the particles will
collapse to a single point within a few iteration.
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OTHER RESAMPLING TECHNIQUES

Resample-move algorithm avoid sample
Impoverishment through rigorous manner that

ensures particles asymptotically approximate
samples from posterior.

Regularization less rigorous
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SAMPLING IMPORTANCE RESAMPLING

Choice of

Importance density to be the
prior density

Resampling step to be
applied at every index

|ndependence of ALGORITHM 4: SIR PARTICLE FILTER
measurements : :
- " [{xf wibil] = SIR [{x}_,,w}_, }; 2]

Inefficient and sensitive to . FORi—1:N,

outllers' | ~ Draw xj, ~ plxelxi_)
Loss of diversity due to — Caleulate w}, = p(z|x})
resampling . END FOR

i o Calculate total weight: t = SUM [{w} } V]

Easy evaluation of . FORi=1:N,
Importance weight and easy - Nommalise: wj = t~uj
sampling of importance » END FOR |
d ens'ty + Resample using algorithm 2:

~ [{x}, wi, —}2V4] = RESAMPLE [{x}, wi} Y]
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PARTICLE FILTERS — EXAMPLE 1
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PARTICLE FILTERS — EXAMPLE 1

B

Use motion model to predict new pose
(move each particle by sampling from the transition prior)

9 0 000 WO *® 0000 B oW
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PARTICLE FILTERS — EXAMPLE 1

T
o

ks

Use measurement model to compute weights
(weight.observation probability)

il .. .". ..

800¢ aunr



PARTICLE FILTERS — EXAMPLE 1
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Resample




PARTICLE FILTERS — EXAMPLE 2
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Initialize particles uniformly




PARTICLE FILTERS — EXAMPLE 2
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PARTICLE FILTERS — EXAMPLE 2
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PARTICLE FILTERS — EXAMPLE 2
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PARTICLE FILTERS — EXAMPLE 2
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PARTICLE FILTERS — EXAMPLE 2
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CONTINUOUS STATE APPROACHES
EG. KALMAN

# Perform very accurately if the inputs are precise

(performance is optimal with respect to any criterion in the
linear case).

7 Computational efficiency.

3 Requirement that the initial state is known.
N Inability to recover from catastrophic failures

N Inability to track Multiple Hypotheses the state (Gaussians
have only one mode)
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DISCRETE STATE APPROACHES
EG. PARTICLE
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2 Ability (to some degree) to operate even when its initial pos
IS unknown (start from uniform distribution).

# Ability to deal with noisy measurements.

2 Ability to represent ambiguities (multi modal distributions).
N Computational time scales heavily with the number of

possible states (dimensionality of the grid, number of
samples, size of the map).

N Accuracy is limited by the size of the grid cells/number of
particles-sampling method.

N Required number of particles is unknown



PARTICLE FILTER ADV. & DISADV.

Can deal with non-
linearities.

Can deal with non-
Gaussian noise

Can be implemented in
O(Ns)

Mostly parallelizable
Easy to implement

PFs Focus adaptively on
probable regions of state
space

Included random element,
they only convergence to
posterior pdf if Ns = inf.

If the assumptions of
Kalman filters are valid, no
PF can outperform it.

Depending on the dynamic
model, Gaussian sum filters,
uncented kalman, or
extended Kalman may
produce satisfactory results
at lower computation cost.
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SIMULATION KALMAN FILTER — REAL PATH

) Figure 1 |Z|fz|
"

File Edit Wiew Insert Tools Deskbop window Help
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SIMULATION KALMAN FILTER — ESTIMATED

PATH

) Figure 2

File Edit Wiew Insert Tools Deskbop window Help

DedE F Rafe € 0EH =50

400

estimated %,y trajectory with estimated measurements

EEX

200 -

-400 F

500

-800

-400

| | 1 | | |
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400
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SIMULATION KALMAN FILTER — REAL
ESTIMATED PATH

J Figure 3

400 T

File Edit Wiew Insert Tools Deskbop window Help

DedE F Rafe € 0EH =50

true (b) and estimated post (1) and est. prior (m) %,y and meas trajectory

EEX
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-400 F

500

-800 ;
-400 -300

|
-200

1
-100

| | |
a 100 200 300 400
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) Figure 4

File Edit Wiew Insert Tools Desktop ‘Window Help

DedES k R0 E 0B 8O3
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value

value

prediction and correction errar plus uncertainties, element 1
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step
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STATE STATE EVOLUTION

-} Figure 5
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File Edit Wiew Insert Tools Deskbop window Help

DedE F Rafe € 0EH =50
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STATE ESTIMATE EVOLUTION

J Figure 5 [Z| [E| EI

File Edit Wiew Insert Tools Deskbop window Help

DedE F Rafe € 0EH =50

2801
2001 -
150
100

a0

_EI:I 1 1 1 1 1 1 1
-100 -50 a a0 100 150 200 250
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STATE ESTIMATE EVOLUTION

J Figure 5 E] [E| E|
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PARTICLE FILTER

Welcome to PFWiz!

This is part of PFLib version 1.0, Copyright {(C) 2006 Lingji
Chen,
Chihoon Lee, Amarjit Budhiraja and Raman K. Mehra.

PFLib is free software; you can redistribute it andfor
modify
it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version ;

of the License, or {at your option) amy later version.

This program is distrilnted in the hope that it will he
useful,

but WITHOUT ANY WARRANTY; without even the implied
warranty of

MERCHANTABILITY or FITHESS FOR A PARTICULAR

DIIRPDNEFE oo tho
Mext Help
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PARTICLE FILTER

— dirmensions

System information

#ilket 1)
yik)

k) + wik]
hx(k) + wik]

X i initial condition: ICI

— functions

—type

f | @ script O anonymous

—type

b ® script O anonymaous

testfun.m

testfun.m
[ Browse |

Browse

— noises

Wi | Gaussian W

¥, |Gaussian v

MEan: D COvaHance:
I, D covariance:

—_

—

’ Cancel ] ’Shnw cude]

’ Mext ] ’ Help ]
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PARTICLE FILTER
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Choosing a Filter
filter type:
PF - Simple v resampling period:
FF -- Sirmple resampling algorithm: |residual
PF -- EKF proposal . _
branch-kill threshald:
FPF -- Regularized I:I
-- Auziliary Yariahble

EKF

(]

initial distribution
’7 GEUSSian 3 mean: covariance: ']

’ Cancel l ’Shuw cude] Dane | Help




PARTICLE FILTER

Choosing a Filter
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filter type:
PF - Simple 3 resampling period:

resampling algarithm:

branch-kill threshold:

residual v
number of particles: 100 B

simple
branch-kill
systematic
none

(]

initial distribution
’7 Gaussian o« rean:

cavariance: ||

’ Cancel l ’Shuw cude] Dane | Help




CODE...
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& C:\Documents and Settings\Ahmad Salam, AlRefai\My Documents\AMATLABYP FLibMmpCodeFile0001.m

File Edit Text Go Cel Tools Debug Deskiop Window Help u
DS H| B o o | S| Aedf| QB BB DE | stk(ese |
B2 i8] - [10 |+ | 11 |x | @
1 % The dimension wvariables were used by PFWiz for error checking TD'
2 -  dim¥ = 1: i
3 — diwm¥ = 1:
4 %¥ 1lnitial condition of the system: NOT used Lo initiali=e the filter
8 |= initX = 0;
[ ¥ function handle for state transition
7 - £ = [itestfun; o
g Z funetion handle for ochservation
9 — h = [@testfun;
10 —  meanlW = 0O;
11 - covil = 1;
12 Y constructing a Gaussian distribution
13 — whistr = Gaussianlhistr (meanW, covill)
1d — meanV = 0;
15 = covVW = 1;
le — whistr = Gaussianlistr (meanV, covW);
17 ¥ Constructing the system postulated by the filter. 3
scripk Ln 41 Col 33




RESULTS

) Figure 1

NEHSE k| RAT D

File Edit Wiew Insert Tools Deskbop window Help
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