KFUPM COE 584 – Robotics Project Presentation 3

DIRECTIONS IN ROBOT LOCALIZATION

Ahmad Salam AlRefai, Computer Engineering dept. Mohammad Shahab, Systems Engineering dept.

OUTLINE

- 1. Bayes Filtering Review
- 2. Kalman Filter Review
- 3. Unscented Kalman Filter
- 4. Mixed Filter
- 5. Cooperative Localization
- 6. Particle Filter Review
- 7. PF Variations
- 8. Resampling Techniques
- 9. KF Simulation
- 10. PF Simulation

BAYES FILTER

Recall the recursive equation

Probability Density (distribution) of the robot state

KALMAN FILTER

• At every Step

 Q_{k-1}

 R_k

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1}^{+}$$

$$P_{k}^{-} = AP_{k-1}^{+}A^{T} + Q_{k-1}$$

$$\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + K_{k}(z_{k} - H\hat{x}_{k}^{-})$$

$$P_{k}^{+} = (I - K_{k}H)P_{k}^{-},$$

$$K_{k} = P_{k}^{-}H^{T}(HP_{k}^{-}H^{T} + R_{k})^{-1}$$
Kalman Gain

Covariance Matrices:

Uncertainties in Actuators & Sensors

KALMAN FILTER

• At each step :

- Computation is only one evaluation of the equations (no particles)
- Belief is Gaussian (Normal), described *only* by Mean and Covariance

• However,

- Applied to linear models (robot is not)
- Environment is dynamic and not gaussian

UNSCENTED KALMAN FILTER

• We introduce the concept of 'Sigma-Points'

- They approximate the belief distribution
- they capture the *most* important statistical properties of the prior belief

UNSCENTED KALMAN FILTER

For 3-state pose, we should choose 2*3+1=7 sigma-points
 At each step,

$$oldsymbol{\mathcal{X}}_0 = oldsymbol{ar{\mathbf{x}}} = oldsymbol{ar{\mathbf{x}}} + igg(\sqrt{(n_x + \lambda)} \mathbf{P}_x igg)_i \quad ext{3 points}$$
 $oldsymbol{\mathcal{X}}_i = oldsymbol{ar{\mathbf{x}}} - igg(\sqrt{(n_x + \lambda)} \mathbf{P}_x igg)_i \quad ext{3 points}$

 n_{χ} Number of states

Weights are chosen also (see paper)

UNSCENTED PARTICLE FILTER

- 1. At each step for each particle:
 - 1. Calculate the Sigma Points
 - 2. Apply Kalman Update Equations
 - 3. Normalize and get mean and covariance for each particle
- 2. Continue the PF as known before
- It looks like it has more computation, but if particles number is small it will reduce computation and increase accuracy

UNSCENTED PARTICLE FILTER

June 2008

June 2008

MIXED PARTICLE FILTER

- 1. For p% of the N particles:
 - Apply Unscented Particle Filter
- 2. For (100-p)% of the particles:
 - Apply the normal particle filter
- 3. Normalize all weights from 1,2
- 4. Resampling

"A Mixed Fast Particle Filter"

Fasheng Wang, Qingjie Zhao, and Hongbin Deng

MIXED FILTER

COOPERATIVE MULTI-ROBOT LOCALIZATION

- In Peking University, China, they suggested the concept of "Dynamic Object Reference"
- Dynamic Object Reference:
 - A human can self-localize himself by putting, for example, special building as a reference (static)
 - However in Mobile Robots & Dynamic Environment, we need to have a Dynamic Reference
 - This dynamic reference object can be detected by all robots
 - For one robot: reliable self-localization => reliable object position
 - Normally, the dynamic object is the ball. So, "ball localization" is involved

DYNAMIC REFERENCE OBJECT

- So, for Multi Robots: they can all exchange a 'team message'
 - Object Position, Robot ID, Time, and Position Probability
 - For example

June 2008

(a) $t=t_1$

(b) $t=t_2$

Then, Robot B can be reliable for the object position

COOPERATIVE MULTI-ROBOT LOCALIZATION

- Common approaches for applying cooperation in multiple robots normally have the assumption that robot can identify other robots
- However, Robots only need to recognize the object instead of identify algthe robots in the team

• Algorithm: Using Bayes Filter, like Particle Filter

- After performing the usual PF
- If robot B is reliable, then robot A belief about its own position would be modified by

COOPERATIVE ROBOT LOCALIZATION

PARTICLE FILTER

- Used where models are non-linear and noise is non-Gaussian.
- Use Particles to represent the distribution

$$P(x_{t} | y_{1:t}) = \frac{1}{c_{t}} P(y_{t} | x_{t}) \int_{Z} P(x_{t} | x_{t-1} = z) P(x_{t-1} = z | y_{1:t-1}) dz$$
Motion model
Observation model
(=weight)
Proposal distribution

- Basis for most Monte Carlo Filters
- Technique for implementing recursive Bayesian Filter by Monte Carlo Simulation.
- Represent a set of required Posterior Probability by a set of random samples with weights
- As the number of samples becomes very large, the SIS approach optimality.

 $\begin{array}{lll} \{\mathbf{x}_{0:k}^{i}\} & : & \text{set of support points (samples, particles)} \\ & i=1,\ldots,N_{s} \\ & & (\text{whole trajectory for each particle!}) \\ & w_{k}^{i} & : & \text{associated weights, normalized to } \sum_{i}w_{k}^{i}=1 \end{array}$ Then:

$$p(\mathbf{x}_k|\mathbf{z}_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(\mathbf{x}_{0:k} - \mathbf{x}_{0:k}^i)$$

(discrete weighted approximation to the true posterior)

- The weights are chosen based on the principle of importance sampling.
- $p(x) \propto \pi(x)$ difficult to draw samples
- $x^i \sim q(x), i = 1, ..., N_s$ (q: importance density easy to draw samples where

$$p(x) \approx \sum_{i=1}^{N_s} w^i \delta(x - x^i)$$

 If samples are drawn according to q then weights are defined as

$$w^{i} \propto \frac{\pi(x^{i})}{q(x^{i})} \qquad \qquad w^{i}_{k} \propto \frac{p(\mathbf{x}^{i}_{0:k} | \mathbf{z}_{1:k})}{q(\mathbf{x}^{i}_{0:k} | \mathbf{z}_{1:k})}$$

 If we choose q as q(x_{0:k}|z_{1:k}) = q(x_k|x_{0:k-1}, z_{1:k})q(x_{0:k-1}|z_{1:k-1}) then we can update the sample using existing samples + new state

ALGORITHM 1: SIS PARTICLE FILTER

$$[\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}] = \text{SIS} [\{\mathbf{x}_{k-1}^{i}, w_{k-1}^{i}\}_{i=1}^{N_{s}}, \mathbf{z}_{k}]$$

- FOR $i = 1 : N_s$
- Draw $\mathbf{x}_k^i \sim q(\mathbf{x}_k | \mathbf{x}_{k-1}^i, \mathbf{z}_k)$
- Assign the particle a weight, w_k^i , according to (48)
- END FOR

DEGENERACY PROBLEM

- All but one particle will have negligible weight
- This makes huge computation effort for samples whose contributions is almost zero.
- It can be solved either by good choice of importance function or resampling
- Good choice of importance function requires evaluation of the integrals and drawing samples from P, which is not possible in most cases.

So...

• So at each time step

- For each particle:
 - Use motion model to predict new pose (sample from transition priors)
 - Use observation model to assign a weight to each particle (posterior/proposal)
- Create A new set of equally weighted particles by sampling the distribution of the weighted particles produced in the previous step.

RESAMPLING

- The basic idea of resampling is to eliminate particles with small weights and concentrate on particles with large weights.
- Resample from:

$$p(\mathbf{x}_k|\mathbf{z}_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(\mathbf{x}_k - \mathbf{x}_k^i)$$

• Weights are reset $1/N_s$

Resampling

June 2008

June 2008

RESAMPLING

Systematic Resampling

- Simple to implement
- o O(Ns)
- o Minimize the variation.

ALGORITHM 2: RESAMPLING ALGORITHM

 $[\{{\mathbf{x}_{k}^{j}}^{*}, w_{k}^{j}, i^{j}\}_{j=1}^{N_{s}}] = \text{RESAMPLE} \; [\{{\mathbf{x}_{k}^{i}}, w_{k}^{i}\}_{i=1}^{N_{s}}]$

- Initialise the CDF: $c_1 = 0$
- FOR $i = 2: N_s$
- Construct CDF: $c_i = c_{i-1} + w_k^i$
- END FOR
- Start at the bottom of the CDF: i=1
- Draw a starting point: $u_1 \sim \mathbb{U}\left[0, N_s^{-1}\right]$
- FOR $j = 1 : N_s$
- Move along the CDF: $u_j = u_1 + N_s^{-1}(j-1)$
- WHILE $u_j > c_i$
- $* \ i=i+1$
- END WHILE
- Assign sample: $\mathbf{x}_k^{j^*} = \mathbf{x}_k^i$
- Assign weight: $w_k^j = N_s^{-1}$
- Assign parent: $i^j = i\,$
- END FOR

PARTICLE FILTER

ALGORITHM 3: GENERIC PARTICLE FILTER

 $[\{\mathbf{x}_k^i, w_k^i\}_{i=1}^{N_s}] = \text{PF} \ [\{\mathbf{x}_{k-1}^i, w_{k-1}^i\}_{i=1}^{N_s}, \mathbf{z}_k]$

- FOR $i = 1 : N_s$
- Draw $\mathbf{x}_k^i \sim q(\mathbf{x}_k | \mathbf{x}_{k-1}^i, \mathbf{z}_k)$
- Assign the particle a weight, w_k^i , according to (48)
- END FOR
- Calculate total weight: $t = \text{SUM} [\{w_k^i\}_{i=1}^{N_s}]$
- FOR $i = 1 : N_s$
- Normalise: $w_k^i = t^{-1} w_k^i$
- END FOR
- Calculate $\widehat{N_{eff}}$ using (51)
- IF $\widehat{N_{eff}} < N_T$
 - Resample using algorithm 2:
- * $[\{\mathbf{x}_k^i, w_k^i, -\}_{i=1}^{N_s}] = \text{RESAMPLE}~[\{\mathbf{x}_k^i, w_k^i\}_{i=1}^{N_s}]$

• END IF

PROBLEMS WITH RESAMPLING

- Limits the opportunity to paralelize since all particles need to be combined.
- Loss of Diversity among samples, we have many repeated points. (sample impoverishment).
- In the case of very small noise, all the particles will collapse to a single point within a few iteration.

OTHER RESAMPLING TECHNIQUES

- Resample-move algorithm avoid sample impoverishment through rigorous manner that ensures particles asymptotically approximate samples from posterior.
- Regularization less rigorous

SAMPLING IMPORTANCE RESAMPLING

Choice of

- Importance density to be the prior density
- Resampling step to be applied at every index
- Independence of measurements
 - Inefficient and sensitive to outliers
- Loss of diversity due to resampling
- Easy evaluation of importance weight and easy sampling of importance density.

ALGORITHM 4: SIR PARTICLE FILTER

 $[\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}] = \text{SIR} [\{\mathbf{x}_{k-1}^{i}, w_{k-1}^{i}\}_{i=1}^{N_{s}}, \mathbf{z}_{k}]$

- FOR $i = 1 : N_s$
- Draw $\mathbf{x}_k^i \sim p(\mathbf{x}_k | \mathbf{x}_{k-1}^i)$
- Calculate $w_k^i = p(\mathbf{z}_k | \mathbf{x}_k^i)$
- END FOR
- Calculate total weight: $t = \text{SUM} \left[\{ w_k^i \}_{i=1}^{N_s} \right]$
- FOR $i = 1 : N_s$

– Normalise:
$$w_k^i = t^{-1} w_k^i$$

- END FOR
- Resample using algorithm 2:
- $\left[\{ \mathbf{x}_k^i, w_k^i, \}_{i=1}^{N_s} \right] = \text{RESAMPLE} \left[\{ \mathbf{x}_k^i, w_k^i \}_{i=1}^{N_s} \right]$

June 2008

June 2008

June 2008

PARTICLE FILTERS – EXAMPLE 2

June 2008

PARTICLE FILTERS – EXAMPLE 2

PARTICLE FILTERS – EXAMPLE 2

June 2008

CONTINUOUS STATE APPROACHES EG. KALMAN

- Perform very accurately if the inputs are precise (performance is optimal with respect to any criterion in the linear case).
- Computational efficiency.
- Requirement that the initial state is known.
- Inability to recover from catastrophic failures
- Inability to track Multiple Hypotheses the state (Gaussians have only one mode)

DISCRETE STATE APPROACHES EG. PARTICLE

- Ability (to some degree) to operate even when its initial pose is unknown (start from uniform distribution).
- Ability to deal with noisy measurements.
- Ability to represent ambiguities (multi modal distributions).
- Computational time scales heavily with the number of possible states (dimensionality of the grid, number of samples, size of the map).
- Accuracy is limited by the size of the grid cells/number of particles-sampling method.
- Required number of particles is unknown

PARTICLE FILTER ADV. & DISADV.

- Can deal with nonlinearities.
- Can deal with non-Gaussian noise
- Can be implemented in O(Ns)
- Mostly parallelizable
- Easy to implement
- PFs Focus adaptively on probable regions of state space

- Included random element, they only convergence to posterior pdf if Ns → inf.
- If the assumptions of Kalman filters are valid, no PF can outperform it.
- Depending on the dynamic model, Gaussian sum filters, uncented kalman, or extended Kalman may produce satisfactory results at lower computation cost.

SIMULATION KALMAN FILTER - REAL PATH

SIMULATION KALMAN FILTER – ESTIMATED PATH

SIMULATION KALMAN FILTER – REAL ESTIMATED PATH

4 Figure 4

Elle Edit View Insert Iools Desktop Window Help

- 7 🗙

STATE STATE EVOLUTION

STATE ESTIMATE EVOLUTION

STATE ESTIMATE EVOLUTION

pfwiz
Welcome to PFWiz!
This is part of PFLib version 1.0, Copyright (C) 2006 Lingji Chen,
Chihoon Lee, Amarjit Budhiraja and Raman K. Mehra.
PFLib is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software Foundation; either version :
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful.
but WITHOUT ANY WARRANTY; without even the implied
Warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR DURDOSE See the
Next Help

🛃 pfwiz2					
System information					
$\begin{array}{ll} x(k+1) = f(x(k)) + w(k) \\ y(k) &= h(x(k)) + v(k) \end{array}$					
x: 1 y: 1 initial condition: 0					
f. script of anonymous testfun.m Browse					
h: script anonymous testfun.m Browse					
noises w: Gaussian v mean: O covariance: 1 V: Gaussian v mean: O covariance: 1					
Cancel Show code Back Next Help					

📣 pfwiz 3				
Choosing a Filter				
Filter type: PF Simple PF Simple	resampling period: 2 resampling algorithm: residual 🗸			
PF EKF proposal PF Regularized PF Auxiliary Variable	branch-kill threshold:			
EKF				
initial distribution Gaussian 👻 mean:	0 covariance: 1			
Cancel Show code	Back Done Help			

📕 pfwiz3					
Elter ture :	Choosing a Filter				
filter type:	resampling period: 2				
PF Simple	resampling algorithm: residual 🗸				
number of particles:	100 branch-kill threshold: residual				
1	simple branch-kill				
	systematic				
	none				
inisint dinavity since					
initial distribution Gaussian 👻	mean: 0 covariance: 1				
Cancel Sho	ow code Back Done Help				

CODE...

1	C:	VDocuments and Settings\Ahmad Salam AlRefai\My Documents\MATLAB\PFLib\tmpCodeFile0001.m	
Eile	ļ	<u>Edit T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	ъ
D		ở 📰 🕺 ங 🛍 ∽ ⇔ 😝 🎒 🖛 <table-cell-rows> 🗲 😫 🗐 📽 💷 👘 🗊 📭 Kack: Base 🗸</table-cell-rows>	
Ø	.	$\stackrel{\bullet}{=} \square = 1.0 + \div 1.1 \times \% \% \% 0$	
1		% The dimension variables were used by PFWiz for error checking	
2	-	dimX = 1;	
3	-	dimY = 1;	
4		% initial condition of the system; NOT used to initialize the filter	
5	-	initX = 0;	
6		% function handle for state transition	
7	-	f = @testfun;	
8		<pre>% function handle for observation</pre>	
9	-	h = @testfun;	
10	-	meanV = 0;	
11	-	covW = 1;	
12		% constructing a Gaussian distribution	
13	-	wDistr = GaussianDistr(meanW, covW);	
14	-	meanV = 0;	
15	-	covV = 1;	
16	-	vDistr = GaussianDistr(meanV, covV);	
17		% Constructing the system postulated by the filter.	
10		script Ln 41 Col 33 OVR	
		script EIT 41 COL 33 OVR	

RESULTS

