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1. Introduction 

Here in this report, the Robot Self-Localization problem is investigated. This report will discuss several 

techniques in the literature to solve the localization problem. With the area of Autonomous Robotics is 

rapidly growing, the need of more efficient motion planning is increasing. This can not be established unless 

a robot can knows its own location in the environment. For a human, localization is easy with high 

processing quality of the visual information from the eyes. However, robots need more power to localize in 

the most accurate way. 

 

 Here, we discuss how a robot can estimate its location automatically in known environment. Specifically, 

the standard example investigated here is the RoboCup competition environment. The report will begin by 

giving some definition about the localization problem. Brief familiarization of the RoboCup competition is 

also presented. Brief literature survey about the research aspects related is also included. Then, the report 

will go into establishing the probabilistic framework of the problem. Then the major parts of the report will 

discuss in detail the Kalman Filter and the Particle Filter with orientation towards the robocup application. 

Further extensions to different techniques are also discussed later on. Simulation examples are also 

presented. The report will conclude with giving discussion about future directions in the research of robot 

localization problem. 
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2. Problem Statement 

 

• Autonomous Robotics 

The idea of Autonomous Robotics started in 1920 when Karel Capek introduced, in his play “Rossum’s 

Universal Robot’s”, some robots that control the environment and behave independently.   

Autonomy of a robot is a characteristic define how much the robots depends on prior knowledge of the 

environment and control from outside. Robots can be divided into three types depending on their 

autonomy. First, non-autonomous robots are those that completely driven by humans.Second, semi-

autonomous are either controlled by human or behave independently. Fully-autonomous robot are 

completely driven by the robots themselves, they don’t require any guidance or control in order to do their 

tasks.  

• What is Localization? 

Localization is actually answering the question “Where am I?”  We want to know in an environment what is 

the pose (x & y) of the robot and what is the orientation (heading).  

‐ Position tracking: the robot knows the initial location; the goal is to keep track of position while the 

robot is navigating through the environment. 

‐ Wake up robot (global localization) robot does not know initial position. 

‐ Kidnapped robot: the robot does exactly know where it is when it is localized but all of a sudden it is 

transferred or ‘kidnapped to another location. 
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• Inputs 

The inputs to the problem of the localization are sensor measurements or feature vector of an image. In 

robocup the camera is the main sensor which drives for you a lot of information about your location and 

also other information. We can divide the measurements into two types: Relative Position Measurements 

and Absolute Position Measurements. Odometry is considered as relative measurement, so you update the 

location according to how much you moved given that you know your previous location. The image or 

vision information like angle of the beacon in robocup example is considered as absolute measurement of 

the robot, because it is independent of how much the robot is moved or the belief about previous location. 

It is only dependent on the real location of the robot. 

• Outputs 

The output of localization is a belief about the robot location and orientation given to the next iteration. 

And also given some algorithm we feed the behavior subsystem with estimate about the location and 

orientation of the robot, the behavior system then decide what the robot is going to do. The location at time 

݇ can be represented as 

௞ݔ ൌ ൥
ሾ௫ሿ,௞ݔ
ሾ௬ሿ,௞ݔ
ሿ,௞׎ሾݔ

൩ 

• What is RoboCup? 

Here in this section, an overview of the RoboCup competition is presented. This overview is aiming to give 

an idea about the environment where the localization takes place, namely, the RoboCup soccer field. To just 
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have an idea about the competition, this section will shed the light, in brief manner, upon the history and 

nature of contests.  

RoboCup started in 1997 with contests of Small-size and middle-size leagues. This first RoboCup 

competition was held in Nagoya, Japan with 38 teams from 11 countries. This Competition grew up with 

the years to have 321 participating teams from 39 countries in 2007 in Atlanta, USA. The next RoboCup 

competition of 2008 will be held in Suzhou, China.  

RoboCup is an international research and education initiative. It is to enhance Artificial Intelligence and 

intelligent robotics research through an interesting problem of Soccer where broad range of technologies is 

integrated and tested, and towards giving project-oriented education. 

For a team of robots achieving the overall objectives, many aspects are investigated:  

1) design principles of autonomous agents, 

2) multi-agent collaboration,  

3) strategy acquisition,  

4) real-time reasoning,  

5) robotics, and  

6) Sensor-fusion. 

RoboCup is a task for a team of multiple mobile robots under a dynamic environment. 

As of 2007, in the last competition held in Atlanta, participating teams fought together in different leagues 

(i.e. different kinds of contests:  

1) Simulation League  

a. 2D, 3D, 3D Development, Mixed Reality  
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2) Small Size Robot League  

3) Middle Size Robot League  

4) Four-Legged Robot League (until 2007). From 2008 it will be done in a Standard Platform. 

5) Humanoid League (from 2002)  

a. Kid-size, Teen-size 

In RoboCup, the environment is known; which is the soccer field. In order for a robot in some team 

proceed with the strategy to win the match, the ability of the robot to localize itself in the field is crucial. 

Further planning and strategies in the game depend heavily on the location of the robot. So, that’s why in 

our project we are emphasizing on the area of application related, but not restricted, to soccer robot self-

localization. 

Soccer Field Description 

In order to have the full utilization of information available for a robot, known features of the environment 

should be used in the localization algorithm. So, here in this section, a description of the soccer field will be 

given for the purpose of further analysis of the localization algorithm. 
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The description here will give the details for the field construction for the Four-Legged and Humanoid 

leagues. We are giving the description for both because of the need of self-localization in both leagues. The 

above figure gives the dimensions for the Four-Legged league. In order to utilize all information available, 

the most important ‘features’ needed by the localization algorithm are: 

‐ The cylindrical Beacon landmarks,  

‐ the Goals,  

‐ And the field lines.  

In the Four-Legged league, the beacons are put half-way in the field as shown in above figure, with the 

bottom section in white and other two upper sections colored in the two goal colors (blue & yellow), with 

different order in both beacons.  
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In the humanoid league, there are four cylindrical beacons at each corner of the field. The upper and 

bottom sections of the beacon are colored with the same color of the neighboring goal (i.e. blue or yellow). 

The middle section is colored with opposite goal. Field lines are white and organized as depicted in the 

above figure.   

Another feature that could be utilized is the ball. The ball is an always-moving object colored in orange. The 

outside area of the field can include many other features (e.g. people) which could be unknown. 
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3. Literature Survey 

 

Here, the section will give some idea about the current research on self-localization. Generally, first self-

localization techniques used the concept of Triangulation to find the robots locations. But usually this 

method lacks accuracy because of not giving attention to noise. Some improvement to this method is done 

by averaging several computations. 

As robotic research increased by 1990’s, the need of self-localization increased also. As by 1995, different 

discrete approaches were used. Grid-based and metric representation of the environment was used to 

enhance the localization. Generally, these methods require high amount of memory which makes it not 

favored to fast robotic applications. Also, topological representations of the environment were used. 

The localization problem is an estimation problem, with robot’s position being the unknown state to be 

estimated. So, the work of R.E. Kalman with his Kalman Filter was the biggest discovery to be applied in 

general estimation problem and, in our case, robot localization. A standalone section of the report will be 

reserved for the Kalman Filter. Generally Kalman Filter is used for the position tracking problem. Further 

extensions to this filter are also discussed. 

As robotic systems get more complex and environment get more dynamic, the need of more efficient 

techniques are demanded. The research work for further complex robot localization problems were 

discussed by (Fox, Burgard, Dellaert & Thrun 1999), namely the Monte Carlo Localization (MCL). The 

MCL technique started in the 1970’s and further years were used in computer vision. This method is coming 

from the field of Particle Filters which was been utilized mainly in robot localization problem. Particle 

Filters are often associated with the problem of global localization. Particle Filter (and of course Monte 

Carlo Localization) will be discussed with more detail in other section of the report.  
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Further extensions to different techniques were also attempted with testing Multi-Hypothesis problems 

utilizing multiple kalman filters. Other mixed techniques of Particle & Kalman Filters were investigated also.  

 

4. Assumptions & Models 

 

 Assumptions 

The environment is assumed to be known, and the environment should at least be partially observable. 

Motion Model 

The motion model describes how we can update the location information according to the previous 

location of the robot. The new pose of the robot is calculated by summing up the previous pose and how 

much he moved with some noise. This is done according to the following equation. 

௡௘௪݁ݏ݋ܲ ൌ ௢௟ௗ݁ݏ݋ܲ ൅ ∆୭ୢ୭୫ୣ୲୰୷ ൅ ∆ୣ୰୰୭୰     (1) 

Observation Model 

 The observation model links the observation of the robot to the location of the robot. This model 

calculate what the robot should observe if it was at specific locations. In robocup the angles to the vertical 

lines of the beacons are used as perceptual landmark in updating according to the motion model. 

Noise Models 

 According to your environment you can model your noise, so some teams they use the knowledge 

of the robot and their environment and according to some study they update the compensate the errors that 

are in the noise model.  
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5. Probabilistic Framework 

 

Here in this section, the report will start giving the solid mathematical foundation in order to present the 

localization techniques. The nature of the localization problem is probabilistic. This is due to the noisy 

dynamic changing environment. We can see the problem probabilistically as that the robot has a belief 

about its location. So, at one time instant, we do not depend on one possible location, but we can consider 

the whole space of locations. With good utilization of all available information to the robot, one can be 

certain about one location with some confidence. So, the localization problem can be summed up to the 

process of estimating the Probability Density of the whole location space (e.g. the soccer field). 

The advantages of using the notion of randomness (probabilistic) can include that it: 

‐ Can accommodate inaccurate models 

‐ Can accommodate imperfect sensors 

‐ Is Robust in real-world applications 

‐ Best known approach to many hard robotics problems 

However, in the same time, disadvantages can emerge from this framework as it is: 

‐ Computationally demanding 

‐ Has False assumptions 

‐ Approximate! 
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So, the probability density of the location of the robot at time k can be evaluated as the probability of the 

robot being in certain location ݔ௞ given all available information from the beginning of the process 

(݀௞ being all available information at time k). The available information could of course include the 

environment map or any other a-priori knowledge of the process. Higher probability for a certain location 

means high possibility for the robot to be at that location. So, the goal of the localization is to approximate 

the real robot location belief. The real belief has one high peak at the real location with zeros otherwise. So, 

the localization tries to achieve the same belief of the real location. You can see below a picture about the 

belief at some time. 

 

The available information to the robot comes into two categories: Actions & Sensing. For a robot, an action 

is represented by commands sent to the actuators of robot, e.g. motors. Sensing information come from the 

sensor-based measurements available to the robot. 

So, in order to incorporate the action and sensing data in our belief, we must have some probabilistic 

representation of this available information. For some time k, a robot accepts some actions that change its 

state. We can represent this by 

ܲሺݔ௞|ݔ௞ିଵ, ܽ௞ିଵሻ 
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With ܽ௞ being the action sent to the robot as time k.  For the sensory information, we can represent the 

probability of the sensor data for certain location by 

ܲሺݏ௞|ݔ௞ሻ 

With ݏ௞ being the sensor data available at time k. However, the raw sensor data are of high dimension (e.g. 

image frame). So, to utilize the information in some efficient way, features are extracted from the sensor 

data giving us some feature vector ݖ௞. So for example, ݏ௞ could be the image while ݖ௞ could be representing 

the landmark metric information.  

• Recursive Bayesian Equation 

In general, the localization technique aims to find and improve the belief by good utilization of the action 

and sensing data. So one belief can be viewed as 

௞ሻݔሺ݈݁ܤ ൌ ܲሺݔ௞|ݖ଴, ܽ଴, ,ଵݖ ܽଵ, … , ,௞ିଵݖ ܽ௞ିଵ,  ௞ሻݖ

The above formula gives us more elegant picture of how the belief evolves. With applying the Bayes rule, 

the belief transforms into  

௞ሻݔሺ݈݁ܤ ൌ
ܲሺݖ௞|ݔ௞, ,଴ݖ ܽ଴, ,ଵݖ ܽଵ, … , ,௞ିଵݖ ܽ௞ିଵሻܲሺݔ௞|ݖ଴, ܽ଴, ,ଵݖ ܽଵ, … , ,௞ିଵݖ ܽ௞ିଵሻ

ܲሺݖ௞|ݖ଴, ܽ଴, ,ଵݖ ܽଵ, … , ,௞ିଵݖ ܽ௞ିଵሻ
 

But here, we assume that the process follows to the Markov Assumption. The Markov assumption which 

states that given knowledge of the current state, the past is independent of the future, and vice-versa. So we 

can have the belief as 

௞ሻݔሺ݈݁ܤ ൌ
ܲሺݖ௞|ݔ௞ሻܲሺݔ௞|ݖ଴, ܽ଴, ,ଵݖ ܽଵ, … , ,௞ିଵݖ ܽ௞ିଵሻ

ܲሺݖ௞|ݖ଴, ܽ଴, ,ଵݖ ܽଵ, … , ,௞ିଵݖ ܽ௞ିଵሻ  
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So, we can see that the previous state should contain all information from past. With the use of the rule of 

Total Probability, the rightmost term in the numerator can be changed. Also, the denominator can be 

assumed to be a normalization parameter because is independent of the state. So the whole belief becomes 

௞ሻݔሺ݈݁ܤ ൌ ௞ሻݔ|௞ݖ௞ܲሺߟ න ܲሺݔ௞|
௫׊

,௞ିଵݔ ܽ௞ିଵሻ݈݁ܤሺݔ௞ିଵሻ݀ݔ௫ିଵ 

With ߟ௞ being the normalization factor; and ݈݁ܤሺݔ௞ିଵሻ being the previous belief about the previous 

location of the robot. You can see that the above formula is a recursive equation. This equation defines the 

localization problem in general. The above equation sets the basic formula to ‘solve’ the localization 

problem. The evaluation of this equation has different techniques. In the following sections of the report, 

the major two techniques are discussed, namely, the Kalman Filter and the Particle Filter. 
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6. Kalman Filter Localization 

 

• History 

Kalman Filter is an estimator that estimate the state of a linear dynamic system, this estimator is recursive 

algorithm. It is named after Richard Kalman who discover this idea in 1960. It is considered as one of the 

greatest discoveris in the history of statistical estimation theory. It is used for state estimation in dynamic 

system control. It is used to control manufacturing processes like aircrafts, spacecrafts and robots.  

Kalman Filter is a state estimator that woks on predication-correction algorithm. This means that the robot 

predict a belief about its states using the motion model and the dynamics of the system. After that it 

corrects its belief by the use of the measurement information.  

Kalman Filter estimates the probability of being at specific location ݔ௞ given available information ݖଵ, … ,  .௞ݖ

This called Belief… 

௞ሻݔሺ݈݁ܤ ൌ ܲሺݔ௞|ݖଵ, … ,  ௞ሻݖ

By the use of Bayes’ rule, total probability theorem and Markov assumption, we get 

௞ሻݔሺି݈݁ܤ   ൌ ܲሺݔ௞|ݖଵ, … ௞ିଵሻݖ ൌ ׬ ܲሺݔ௞|ݔ௞ିଵሻ݈݁ܤାሺݔ௞ିଵሻ݀ݔ௞ିଵ 

௞ሻݔାሺ݈݁ܤ ൌ ܲሺݔ௞|ݖଵ, … , ௞ሻݖ ൌ
ܲሺݖ௞|ݔ௞ሻି݈݁ܤሺݔ௞ሻ

ܲሺݖ௞|ݖଵ, … , ௞ିଵݖ
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The prior belief is the conditional probability of being at specific location given all the observation up to last 

step. The posterior Belief incorporate the last measurement into the belief. In order to calculate belief we 

need to know the system mode ܲሺݔ௞|ݔ௞ିଵሻ and measurement mode ܲሺݖ௞|ݔ௞ሻ. The computation of the 

prior belief is considered as prediction of the state after a time step. The computation of the posterior belief 

can be seen as a correction step, which corrects the prediction step because of the noisy system.  

• Assumptions 

In order to apply Kalman Filter use both phases of prediction and correction, the Kalman filter assume that 

the system is linear dynamic system. That mean that we can describe the evolution of the system through 

the use of linear equations, and the equations that explain the relation between measurements and the 

system can be represented in linear equations. 

The dynamic system can have some noise; however this noise must be independent of other noise sources.  

The noise is assumed to be white which means that the noise has noise has power all frequesnsites, and the 

amount of noise is not correlated in time, so knowing the amount of noise at specific time does not help in 

predicting the amount of noise at any other time. The noise has zero-mean implies the error is random. The 

noise is Gaussion, means that the distribution of the noise is modeled by bell-shaped curve.  So the system 

and measurements noise can by described as 

,௞~ܰሺ0ݓ ܳ௞ሻ 

,௞~ܰሺ0ݒ ܴ௞ሻ 

Where ܰሺߤ,Σሻ is a Gaussian distribution with ߤ mean and Σ covarience. 
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Gaussianity in noise implies that the distribution of the system and measurement model can be fully 

described by mean and variance if the motion model can be described as 

௞ݔ ൌ ௞ିଵݔܣ ൅  ௞ିଵݓ

 ௞ିଵ is the system noise and it is zero mean system noise with covariance ܳ௞, so the probabilistic systemݓ

model can be 

ܲሺݔ௞|ݔ௞ିଵሻ ൌ ܰሺݔܣ௞ିଵ, ܳ௞ሻ 

And using the measurement model shown below 

௞ݖ ൌ ௞ݔܪ ൅ ௞ݒ  

Similarly, by the use of gaussinity of ݒ௞, we can write the conditional probability of seeing ݖ given ݔ can be 

written as 

ܲሺݖ௞|ݔ௞ሻ ൌ ܰሺݔܪ௞, ܴ௞ሻ 

• Algorithm 

The algorithm of Kalman Filter consists of an initialization step followed be an alternating prediction and 

corrections steps. 

 

Initialization 

Initial posterior estimate and initial uncertainty in state estimate, the distribution of the belief is ݈݁ܤାሺݔ଴ሻ ൌ

ܰሺݔො଴
ି, ଴ܲ

ିሻ. In order to initialize with initial posterior state estimate ݔො଴
ା and initial uncertainty ଴ܲ

ା. 



COE584 Project, Shahab & Salam for Prof. Mayez. June 2008 
 

20 | P a g e  
 

Prediction Equations 

In this step the prior belief ି݈݁ܤሺݔ௞ሻ ൌ ܰሺݔො௞
ି, ௞ܲ

ିሻ shall be computed where, this is done by projecting 

forward the most resent belief.  

ො௞ݔ
ି ൌ ො௞ିଵݔܣ

ା  

௞ܲ
ି ൌ ܣ ௞ܲିଵ

ା ்ܣ ൅ ܳ௞ିଵ 

Where ܣ is a matrix describes how the system evolve from the posterior of previous step to prior of the 

current step. Since the system is subject to noise the uncertainty ௞ܲ
ି is increased.  

Correction Equations 

The correction equations are called measurement update equations. These equations correct the belief of the 

prediction by incorporating information from measurements. The posterior belief is computed ݈݁ܤାሺݔ௞ሻ ൌ

ܰሺݔො௞
ା, ௞ܲ

ାሻ according to the following equations 

ො௞ݔ
ା ൌ ො௞ݔ

ି ൅ ௞ݖ௞ሺܭ െ ො௞ݔܪ
ିሻ 

௞ܲ
ା ൌ ሺܫ െ ሻܪ௞ܭ ௞ܲ

ି 

௞ܭ ൌ ௞ܲ
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴ௞ሻିଵ 

In which ܭ௞ is the Kalman gain, and the posterior state ݔො௞
ା is calculated by adding the prior state to the 

difference between the measurement ݖ௞ and the predicted measurement ݔܪො௞
ି, where ܪ is the measurement 

matrix given in the measurement model. The difference between the measurement  ݖ௞ and the expected 

measurement is called the innovation. The Kalman gain give us how much of the innovation should be 

taken into account to determine the posterior state estimate. If the new measurement is “trusted” then the 

Kalman Gain will be high and the uncertainty will be close to zero and vice versa. 
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7. Particle Filter Localization 

Here in this section, the method of particle filter will be discussed. Unlike the Kalman Filter, the particle 

filter is applied on problems with no assumption about the nature of noise or the nature of robotic system 

at hand. The particle filter has many names in the literature. Particle filter can be found named as: Bootstrap 

filter, Monte Carlo Localization (MCL), Survival of the fittest or Condensation algorithm.  

The key idea of the particle filter is to represent the previous belief about the location of the robot by a 

collection of weighted ‘particles’. This collection of particles defines the probability density of the location. 

In our problem of robot localization, the particles are being some possible locations (states) of the robot. 

So, the belief can be represented as 

௞ሻݔሺ݈݁ܤ ൌ ሼݔ௜,  ௜ሽݓ

With i=1,2,3,…, N. with N being the number of particles. With ݓ௜ being the associated weight of particle i. 

Those weights are with the property of 

෍ ௜ݓ
ே

௜ୀଵ

ൌ 1 

So, for a global localization problem (i.e. robot does not know is initial location), the initial weights can be 

uniform as shown in the below picture. 

 



COE584 Project, Shahab & Salam for Prof. Mayez. June 2008 
 

22 | P a g e  
 

The weights of the particles represent, in some way, the confidence about each particle (i.e. of each 

location). So, unlike the Kalman filter, rather than the belief being Gaussian, the belief here is represented 

only by a collection of discrete particles that represent the evolution of the system location. So, operating on 

these particles should give us a good result about the belief. You can picture a possible non-Gaussian belief 

by referring to the below figure. 

 

You can see from above figure that the belief for some time instant is not following the Normal (Gaussian) 

distribution. The particle filter technique can be considered also as a Bayesian problem. So, recalling the 

recursive Bayesian equation 

௞ሻݔሺ݈݁ܤ ൌ ௞ሻݔ|௞ݖ௞ܲሺߟ න ܲሺݔ௞|
௫׊

,௞ିଵݔ ܽ௞ିଵሻ݈݁ܤሺݔ௞ିଵሻ݀ݔ௫ିଵ 

For the particles, this recursive equation can be represented as 

௞ሻݔሺ݈݁ܤ ൌ ௞ሻݔ|௞ݖ௞ܲሺߟ ෍ ܲሺݔ௞|ݔ௞ିଵ, ܽ௞ିଵሻ݈݁ܤሺݔ௞ିଵሻ
ே ௣௔௥௧௜௖௟௘௦׊

 

So, to utilize the above equation, the motion model and the observation models should be used in order to 

have better belief, i.e. better particles.  
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1) Motion Update 

At any time instant, the algorithm generates N particles from the previous belief. The motion update is 

applied to all particles. The motion update is done using the motion model of the robot system. The motion 

information of the robot can be summed into the change of the odometry data of the system as 

௞ݔ ൌ ௞ିଵݔ ൅  ݔ∆

With ∆ݔ is the odometry update on the state of the robot. You can picture the motion update for each 

particle as viewed in the below figure. 

 

In the above figure, you can see that the arrow is representing the motion update effect on each particle. 

The distances of the update are all the same for all particles (of course). The headings of each particle are 

different because of different heading values from the previous belief. This step of the algorithm (motion 

update) represents the evaluation of the part of the recursive equation that is 

෍ ܲሺݔ௞|ݔ௞ିଵ, ܽ௞ିଵሻ݈݁ܤሺݔ௞ିଵሻ
ே ௣௔௥௧௜௖௟௘௦׊
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You can easily relate the motion update to the specific variables appearing in the above equation. So, the 

motion update propagates the previous belief to the next step, the observation update. 

2) Observation Update 

The evaluation of the recursive equation is left with the part of 

 ௞ሻݔ|௞ݖ௞ܲሺߟ

You can see easily that this part is related to the observations or sensory data available in time k. so the 

choice of the weights of each particle should be selected in the best way to reflect the real belief of the 

location of the robot. So one weight selection can be seen as 

௜ݓ ן   ܲ൫ݖ௞หݔ௞
௜ ൯ 

With ݔ௞
௜  is the state of particle i. you can see here that the ‘importance’ weight of a particle is proportional to 

the effect of the sensory data on the particle state. So we can make 

௜ݓ ൌ ௞ݔ௞หݖ௜ܲ൫ߟ 
௜ ൯ 

 with ߟ௜ is the normalization constant that makes ∑ ௜ேݓ
௜ୀଵ ൌ 1.  So the observation update is utilizing the 

incoming sensory data to change the ‘confidence’ of each particle depending on the observation model of 

the system. So ܲ൫ݖ௞หݔ௞
௜ ൯ is representing the observation model of the system that evaluates the probability 

of available measurements given specific location of the particle. A pictorial view of the observation update 

can be seen in the below figure. 
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You can see that weights of particles change from one particle to another. These differences are due to the 

measurements coming that indicate the information of the existence of a door which increases the 

confidence for particular location in the space represented by the particles. To proceed to the next step, the 

particles should be re-generated to represent more the discrete belief of the current step. 

3) Resampling 

In this step, the goal is to create a new set of equally weighted particles, again, by sampling the distribution 

of the weighted particles produced in the previous step. This should approximate the belief of the location 

of the robot. Different techniques are there on how to draw particles from the previous step. On method is 

to use the same particles from previous step, i.e. no resampling. But this will produce all but one particle to 

have negligible weights. This makes huge computation effort for particles whose contributions are almost 

zero. So the basic idea of resampling is to eliminate particles with small weights and concentrate on particles 
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with large weights. You can visualize a resampling for particles from time k-1 to the new step at time k in 

the below figure. 

 

In the above figure, it can be seen that at time k, more particles are put around the higher-weighted particles 

from time k-1. This resampling can eventually eliminate the unwanted particles. But in general, resampling is 

also problematic. We can say that resampling limits the opportunity to parallelize since all particles need to 

be combined. Resampling could cause the loss of Diversity among samples, we have many repeated particles 

(sample impoverishment), i.e. that the new ‘repeated’ particles could not really represent the actual belief but 

rather only the previous weight. Also, In the case of very small noise, all the particles will collapse to a single 

point within a few iteration which produces unwanted computation. 
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In the above figure, on the left, the calculated weights are shown after applying the observation update. In 

the right, the resampling of the particles in the next step is done according to ‘importance’ or ‘confidence’ 

information coming from the previous weights. 

4) Location (state) Estimation 

In this final step for a particle filter, the location of the robot should be estimated from the current belief 

available. There are many ways to compute the location to be further used in future: 

‐ One way is to calculate the mean of all particles, but this could include wrong information from 

wrong-weighted particles. 

‐ Another way is to just take the particle with highest weight, but this loses the information provided 

by other particles. 

‐ Another convenient way is a mixture of above ones. The location of the robot could be estimated by 

firstly divide the location space of the robot to many clusters according to metric description of the 

environment. Then, in each cluster, the mean is calculated for the particles in that cluster. Then the 

highest mean is accepted. 

 



COE584 Project, Shahab & Salam for Prof. Mayez. June 2008 
 

28 | P a g e  
 

A final word about Particle filters is to mention some advantages and disadvantages. Advantages to using 

particle filters (or MCL): 

1. Able to model non-linear system dynamics and sensor models 

2. No Gaussian noise model assumptions 

3. In practice, performs well in the presence of large amounts of noise and assumption violations (e.g. 

Markov assumption, weighting model…) 

4. Simple implementation 

However, Particle filter also has some disadvantages: 

1. Higher computational complexity 

2. Computational complexity increases exponentially compared with increases in state dimension 

3. In some applications, the filter is more likely to diverge with more accurate measurements 
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8. Localization Method Extensions 

 

• Extended Kalman Filter 

The basic Kalman solves the problem of prediction in a noisy environment. But what if the motion and 

measurement models are described by nonlinear functions? We need to linearize the system by evaluating 

the Taylor series at trajectories that are updated with latest state estimates. 

The Algorithm of the extended Kalman filter is ver similar to the Kalman taking into account the 

linearization at each step 

Initialization 

The system is initialized with initial posterior state estimate ݔො଴
ା and initial uncertainty ଴ܲ

ା. 

Prediction Equations 

In this step the prior belief ି݈݁ܤሺݔ௞ሻ ൌ ܰሺݔො௞
ି, ௞ܲ

ିሻ shall be computed where, this is done by projecting 

forward the most resent belief.  

ො௞ݔ
ି ൌ ݂ሺݔො௞ିଵ

ା ሻ 

௞ܲ
ି ൌ ௞ܣ ௞ܲିଵ

ା ௞ܣ
் ൅ ܳ௞ିଵ 

Where ܣ௞ is the Jacobian matrix that contains the partial derivatives of the system function ݂ሺ. ሻ with 

respect to state ݔ. This is evaluated at the posterior state estimate ݔො௞ିଵ
ା  of last time step 

௞ܣ ൌ
߲݂ሺݔሻ

ݔ߲
|௫ୀ௫ොೖషభ

శ  
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Correction Equations 

The correction equations are called measurement update equations. These equations correct the belief of the 

prediction by incorporating information from measurements. The posterior belief is computed ݈݁ܤାሺݔ௞ሻ ൌ

ܰሺݔො௞
ା, ௞ܲ

ାሻ according to the following equations 

ො௞ݔ
ା ൌ ො௞ݔ

ି ൅ ௞ݖ௞ሺܭ െ ݄ሺݔො௞
ିሻሻ 

௞ܲ
ା ൌ ሺܫ െ ௞ሻܪ௞ܭ ௞ܲ

ି 

௞ܭ ൌ ௞ܲ
௞ܪି

்ሺܪ௞ ௞ܲ
௞ܪି

் ൅ ܴ௞ሻିଵ 

Where ܪ௞ is the Jacobian Matrix that contains the partial derivatives of the measurement function ݄ሺ. ሻ with 

respect to state ݔ, evaluated at the prior state estimate ݔො௞
ି, 

௞ܪ ൌ
߲݄ሺݔሻ

ݔ߲
|௫ୀ௫ොೖ

ష 

• Unscented Kalman Filter 

We faced some assumptions in the normal Kalman Filter method. These assumptions could ruin the results 

of the filter. These assumptions that could have negative effect on the localization result are: System 

Linearity & Gaussian environment. But it is easily understood that the robot systems are not linear at all. 

Robot mechanics produces nonlinearities in the process. Extended Kalman Filter (EKF) solves that 

problem of nonlinearity. However, linearization error, in some application, gives false filter results at the 

end. So the need for another method is investigated. So, we can now present the so-called Unscented 

Kalman Filter (UKF).  
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In the above figure, the first (right) picture shows the complete distribution (or Belief) represented by 

particles, as in particle filter. In the middle, the kalman filter accepts only the values of the mean and 

covariances to describe the complete distribution (that is in the linear case or in linearized case of EKF). 

However, in the third (left) picture, a new concept is introduced. This is called the ‘Sigma-points’. The 

Unscented transformation is applied to the belief of the probability density to have a collection of sigma-

points which are sufficient to approximate the whole distribution. So, these Sigma-points are to approximate 

the belief rather than using only the mean and covariances. The number of sigma-points calculated is equal 

to = 2*m+1, with m being the number of states in the robot location. In our case m = 3. The selection of 

the sigma points is done as 

 

With the first sigma-point ࣑૙ being the mean. Excluding the first point, the above last 2 equations, each 

applied for different state. For example for m=3, the 2 equations are evaluated 3 times with  
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Being the ith row associated with state i. here, we have ߣ is a spread factor (to scale the spread of the sigma-

points) and ࢞ࡼ is the covariance matrix of the states, i.e. uncertainty. Weights are chosen to normalize the 

points. The procedure for localization problem to be solved by UKF is to just, in every step, apply the 

normal Kalman Filter to each point and then normalize. 

 

• Unscented Particle Filter 

Here, nothing new is presented except the mixing between the particle filter technique with the concept of 

unscented kalman filter. The algorithm goes as: 

1. At each step for each particle: 

o Calculate the Sigma Points 

o Apply Kalman Update Equations 

o Normalize and get mean and covariance for each particle 

 

2. Continue the Particle Filter as explained before 

 

It looks like it has more computation, but if particles number is small it will reduce computation and 

increase accuracy. Another variation to this is to have mixed filter. It was called ‘mixed fast particle filter’. 

This algorithm goes as 

1. For p% of the N particles: 

 Apply Unscented Particle Filter 
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2. For (100-p)% of the particles: 

 Apply the normal particle filter 

3. Normalize all weights from 1,2 

4. Resampling 

• Negative Information 

One of the proposed techniques in localization is to make use of what you don’t see, or what is call negative 

information. The idea of negative information is to say that if I am in this location I should get the following 

information or see that thing but I am not seeing it, so I know that I am not at this specific location. 

Negative Information gives us less information than positive information because there might be to reasons 

to not seeing anything either because it is really not there, or the robot could not detect its existence.  

Although negative information gives us less information than the positive information, it is needed 

especially when we do not have enough information given through the positive information. The following 

figures show the use of negative information. 

The robot initially does not know where it is located, it has a sensor to detect doors. The distribution of the 

belief is uniform. 
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Now the robot detects a door, and since it has a prior knowledge of the environment the distribution of 

observing a door will increase at the location of the two doors.  

 

The robot moves forward, it update its location according to the motion model. In this stage the negative 

information is negligible.  

 

The robot moves on and he was not able to detect another door. The כ݈݁ܤሺݏ௧ሻ shows the belief if we take 

the negative information into account, whereas ݈݁ܤሺݏ௧ሻ is without taking the negative information into 

account. The negaitive information allow the robot to remove the left peak in the distribution. 
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The algorithm for implementing the use of Negative information is in the following way 

௞ሻݔሺି݈݁ܤ ൌ න ,௞ିଵݔ|௞ݔሺ݌  ௞ିଵݔ௞ିଵሻ݀ݔሺ݈݁ܤ௞ିଵሻݑ

If (landmark l detected) then 

௞ሻݔሺ݈݁ܤ ൌ  ௞ሻݔሺି݈݁ܤ௞ሻݔ|௞ݖሺ݌ߟ

Else 

௞ሻݔሺ݈݁ܤ ൌ ௟,௞ݖ൫݌ߟ
כ หݔ௞, ,௞ݎ  ௞ሻݔሺି݈݁ܤ௞൯݋
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So this algorithm update the prior belief then checks if landmark is expected to be detected and it is 

detected it update the posterior normally according to the positive information. Otherwise it update the 

belief using the negative information taking into account the sensor range r, and possible occlusion o. 

Using this algorithm with particle distribution in the following cases 

‐ 100 Particles (MCL) VS 2000 Particles to get better representation. 

‐ Not using negative Information VS using negative information. 

• Entropy H (information theoretical quality measure of the position estimate. 

 

In case we don’t use negative information, the robot is not able to localize in both cases whether we have 

100 particle or 2000 particles, noting that only using bearing to landmark is used as a positive information. 

 

However when we used negative information the robot is able to localize quickly as shown in the next 

diagram. 

∑ts ttp
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The following diagram shows the effect of using the negative information. The one to the left is with using 

the bearing to beacons as information, the one with * and blue is with the use of negative information. The 

use of negative information reduces entropy. The diagram to the right show when we use the field line as 

input, it improve the accuracy (reduce uncertainty) but also when we use negative information it improves it 

more. 
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• Cooperative Localization 

Here in this section, an interesting method is discussed. This work is related to the work of 2006 team 

sharPKUngfu, of Peking University, China. They suggested the concept of “Dynamic Object 

Reference”. Dynamic Object Reference can be explained through this example: A human can self-localize 

himself by putting, for example, special building as a reference (static). However, with Mobile Robots & 

Dynamic Environment, we need to have a Dynamic Reference. This dynamic reference object can be 

detected by all robots. So, for one robot: reliable self-localization => reliable position of the dynamic 

reference object, which can lead to other robots to self-localize themselves relatively and according to the 

‘reliable’ estimation of the dynamic object. Normally, the dynamic object is the ball. So, “ball localization” is 

involved also in the process of self-localization.  

So to have the cooperation element in the robot team, for Multi Robots: they can all exchange a ‘team 

message’. This message contains the information of: Object Position, Robot ID, Time, and Position 

Probability. The position probability is an indication of reliability of the dynamic object position estimate. 

This estimate is to be used as a possible improving information for localization algorithm. 
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In the above figure, the upper-most part represent robot configuration at different time instants. Robots try 

to localize the ball (round object). The lower table show the exchanged messages for both time instants. 

You can see that at the first time instant, robots C & D do not see the ball. So, their object estimate is less 

reliable than the other robots. Robot B can be seen that its estimate of the ball position is more reliable than 

other robots. This makes robot B the most trusted one. So, further analysis should be done on how to 

incorporate this information in order for other robots to localize themselves. 

Using any algorithm, as explained in other sections of the report, the belief of the location of the robot can 

be estimated. To include the exchanged information between the team, a further update is applied to the 

current belief 

 

With ܲሺݔ௞
௔|݆ܾ݋ሻis some evaluation of probability of location of the robot given the dynamic object position 

coming from the most trusted robot B. 

 

 



COE584 Project, Shahab & Salam for Prof. Mayez. June 2008 
 

40 | P a g e  
 

• RoboCup Teams Localization 

Here is a table of summary for different teams participating in RoboCup competition with their self-

localization algorithms. 

Team/Univ Technique Remarks

Nubots,  University of 
Newcastle, Australia EKF 

When there is insufficient information available or ambiguous, 
problems with slow estimate ‘drift’ with time. Some Adaptive Control 
is done! 

BabyTigers DASH, 
Osaka City University, Japan 

MCL 
 

Cerberus, Bogazici 
University, Turkey S-LOC Mixture Concepts, explained in 2005 report 

Eagle Knights, ITAM, 
Mexico Triangulation + Correction Algorithms 

Team Chaos, University 
of Murcia, Spain Fuzzy Logic claiming extended techniques with only natural landmarks 

S.P.Q.R., Universit`a di 
Roma, Italy MCL + SIR Two stages: MCL then Sampling/Importance Sampling 

UChile1, Universidad de 
Chile, Chile MCL + EKF Tried a faster Adaptive-MCL but accuracy low 
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The estimated motion is 

 

We see in the estimation motion a different in the start because we feed the system with wrong initital 

position. And both the estimated and real together 
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The following diagram shows the error falling between the uncertainty measures of x, y and the orientation 

 

At the beginning the error is high then it approach zero. 

The second case when we increase the uncertainty of the noise on the motion model, then the true 

movement will be 
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The estimated movement will look like 

 

And both together they will be in this way 

-500 -400 -300 -200 -100 0 100 200 300 400
-700

-600

-500

-400

-300

-200

-100

0

100

x(cm)

y(
cm

)

true x,y trajectory with measurements

-500 -400 -300 -200 -100 0 100 200 300 400
-700

-600

-500

-400

-300

-200

-100

0

100

200

300

x(cm)

y(
cm

)

estimated x,y trajectory with estimated measurements



COE584 Project, Shahab & Salam for Prof. Mayez. June 2008 
 

45 | P a g e  
 

 

As we can see there is a little difference, this is will be more clear in the next diagram that shows the error 
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 The third experiment when we increase the uncertainty of the error in the process of estimation 

(measurements) 

The true path will look like 

 

The estimated path will look like the following 

 

And both together are shown below 
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The error measure is shown below  

 

As we can see increasing the error in the measurement model, will not have a significant effect on the 

estimation process because the Kalman filter will not depend heavily on the measurements because they are 

not very certain. Kalman filter use lower percentage of measurement model and more of the motion model. 
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• Particle Results 

The Particle Filter Library is implemented in the following way as shown in the diagram below 

 

The user program will be able to use function provided in order to estimate the location of the robot. The 

program provide user interface, they are shown below and are self explanatory… 
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And then the code is generated 

 

The next diagram show both true and estimated value with identity covariance of the noise in both 
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When we increase the noise of the true process (motion) the following diagram shows the path 

 

In the above figure we see a large difference between estimated and true value. Next diagram show the true 

and estimated when we have large varience in the noise in the measurement model 
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10.Future Directions & Discussion 

 

Here, the authors discuss future possible areas of research in order to improve the localization problem 

solution. So, there are several issues to be discussed: 

1) One big issue is to study more the efficiency of the techniques. That means to study how to 

increase the accuracy with keeping computation reasonable. We saw that Kalman filter is 

computationally cheap. However, it fails to estimate robot location in complex environments with 

non-Gaussian noise. Particle filter is better that kalman filter because of good results even with no 

assumptions. However, the computation complexity increases as the number of particles increase 

which expensive.  

So, a new direction for accurate fast estimation of the belief of the robot location is to study how 

could the Bayes filter (rule) to help us more to propagate information from previous step to next 

step with minimum computation and error. Because of the nature of non-Gaussian (multi-modal) 

dynamically changing environment, completely different approaches should be investigated to make 

efficient utilization of previous knowledge and current data. The most important issue is to have the 

previous belief ‘transferred’ into the future with minimum number of size (e.g. not big size: particles) 

and with reserved accuracy (e.g. no assumption, so minimum error). 

 

2) Implementation: one direct direction to have solid evaluation of the several techniques discussed in 

to try to implement different scenarios and algorithms into different robotic platforms. The results 

can be investigated so that further algorithm development can be thought. 
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11. Team Work  

Task Details 
Investigation & Problem Study Both Members from GermanTeam Report 2005 
Negative Information Shahab bring the paper,  

and Salam investigate it
Mixture Proposal Shahab bring the paper,  

and Both Study it 
Bayes Filtering Techniques Salam bring the paper,  

and both study it
Presentation 1 (Particle Filter 
Localization) 

Shahab responsible of Bayes Filter and particle filter  
and Salam present negative information and importance of robotics 
field. 

Kalman Filter Localization 
Master Thesis 

Salam bring the thesis, and  
both of authors studied the thesis,  
salam generated simulation results from the code. 

Presentation 2(Kalman Filter 
Localization) 

Salam introduce the problem, talk about probabilistic framework and 
Kalman filtering in general.  
Shahab talk specifically about Kalman Filter Localization and the use of 
landmarks in locating the robot, he also talk about different approached 
by robocup teams.

PF Library Salam Contacted the professors who developed PFLib Matlab Particle 
Filter Library and got the code.  
Both Discussed the structure of the code. Salam generated simulation 
results from the code. 

Unscented Kalman/Particle 
Filter 

Shahab brings two papers and studied them 

Cooperative Localization Shahab Looked at team report who used this technique. 
Particle Filter Tutorial Salam brought the paper and studied it
Presentation 3 Shahab reminded about Kalman, he explained then Unscented 

Kalman/Particle Filter, Cooperative Localization.  
Salam talked about particle filtering variations, resampling techniques 
and simulation of Kalman and Particle results.

Final Report Both wrote the whole report… 
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