KFUPM SE 513 – Modeling & Systems Identification Course Project

Identification of a Magnetic Levitation System

For Prof. Doraiswami

By

Mohammad Shahab, Systems Engineering dept.

Maglev Trains

JR-Maglev MLX01 reached 581 km/h (Japan)

superconducting magnets which allow for a larger gap, and repulsive-type Electro-Dynamic Suspension (EDS).

JUNE 2008

Magnetic Bearings

-support moving machinery without physical contact

- advantages include very low and predictable friction, ability to run without lubrication and in a vacuum

- industrial machines such as compressors, turbines, pumps, motors and generators

Research Experimentation

Outline

1. System Dynamic Model

- 1. Nonlinear Model
- 2. Linearized Model

2. System in the LAB

- 1. Feedback[®] MAGLEV System
- 2. Control Loop

3. Experiment

- 1. Hardware
- 2. Software
- 3. Data

4. Identification

- 1. Models
- 2. Results
- 3. Analysis

5. Future Directions

System Model

References for Model:

1- P. S. Shiakolas, R. S. Van Schenck, D. Piyabongkarn, and I. Frangeskou, "Magnetic Levitation Hardware in the Loop and MATLAB Based Experiments for Reinforcement of Neural Network Control Concepts", IEEE Transactions on Education, 2004

2- A. Bittar and R. M. Sales, "H2 and H, control applied to an electromagnetically levitated vehicle", IEEE International Conference on Control Applications, Connecticut, USA, 1997

Free-Body Diagram

Free-Body Diagram

L(x) Total Inductance

 $L_0 X_0$ Operating Points

 $L_{\text{JUNE $2008}}$ Coil Inductance

Free-Body Diagram

Input: Voltage / Output: Ball Position

$$M\ddot{x} = Mg - K_L \frac{i^2}{x^2}$$
with $V = R_c i + L_c \frac{di}{dt} \cong K_c i$
Assume no dynamics

 R_c Coil Resistance

/ Input: Voltage

Nonlinear Model

$$\ddot{x} = g - \frac{K_L K_c^2 V^2}{M x^2}$$

$$\ddot{x} = g - K_s \frac{V^2}{x^2}$$
Input: Voltage / Output: Ball Position

Linearization

$$\ddot{x} = g - K_s \frac{V^2}{x^2}$$

 $\ddot{x} = f(x, V)$

For some Operating Points X_0 , V_0

 $\cdot V$

$$\ddot{x} = \frac{\partial f}{\partial x}\Big|_{X_0, V_0} \cdot x + \frac{\partial f}{\partial V}\Big|_{X_0, V_0}$$

$$\ddot{x} = \frac{2K_s V_0^2}{X_0^3} x - \frac{2K_s V_0}{X_0^2} V$$

JUNE 2008

Transfer Function

$$\ddot{x} = \frac{2K_s V_0^2}{X_0^3} x - \frac{2K_s V_0}{X_0^2} V$$

$$\frac{x(s)}{V(s)} = \frac{\frac{(-2K_sV_0)}{X_0^2}}{(S^2 - \frac{2K_sV_0^2}{X_0^3})}$$

So,
$$\frac{x(s)}{V(s)} = \frac{b}{(s^2 + a^2)}$$

2nd order system

MAGLEV in Lab

- In closed-loop
- Photosensor (IR) for position
 - Sensor = 2.5V -> furthest from magnet
 - Sensor = -2.5 -> closest to magnet
- Set-point manually changed
- Analog Controller onboard

Closed-Loop System

Controller

Lead/Lag Compensator

Experiment

Software

- Collected data Using:
 "VI Logger"
- Data-logging software
- Scheduling features
- Flexible adjustments
- Choose sampling speed

- Disturbance Generation:
 "LabVIEW"
- You can generate any kind of signals as required:
 - Random Sequence,
 - sinusoids,
 - Etc

Data

- Three set-points:
 - 0, 1, -1
- Sampling rate:
 - 1kHz, i.e. 1000 samples per second
- Disturbance = Random Sequence with small amplitude
- Data Collected for:
 - Disturbance (d)
 - System Output (x)
 - Control Input (V)

Data

- Data(0) = 3 × 41431 samples
- Data(1) = 3 × 41309 samples
- Data(-1) = 3 × 39257 samples

20

SYSTEM IDENTIFICATION

Model Structure

Recall

$$\frac{x(s)}{V(s)} = \frac{b}{(s^2 + a^2)}$$

• Due to discretization

$$G(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

Other Information

- As hardware sampling period is 1ms
 - we can artificially enlarge the sampling period by 'skipping' samples
- Convenient speeds 1~10ms
- It is expected to have:
 - Poles around unit circle

MAGLEV Identification

• Open-loop System Input: V, Output: x

$$G_0(z) = \frac{4.869 \times 10^{-5} + 0.0001446z^{-1}}{1 - 1.899z^{-1} + 0.8996z^{-2}}$$

$$G_1(z) = \frac{-2.9 \times 10^{-6} + 0.0001233z^{-1}}{1 - 1.837z^{-1} + 0.8374z^{-2}}$$

$$G_{-1}(z) = \frac{4.37 \times 10^{-5} + 0.0001342z^{-1}}{1 - 1.911z^{-1} + 0.911z^{-2}}$$

Results Plots

Samples 2000-3000 showing

Set-point = 0

Set-point = 1

Set-point = -1

Results Analysis

- System 1 Poles:
 - 0.9932, 0.9057
- System 2 Poles:
 - 0.9968, 0.8401
- System 3 Poles:
 - **0.9958**, 0.9148

• All poles proved to be near the unit circle

Identification Approach 2

• Here, lets make

$$G(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1} + z^{-2}}$$
$$a_2 = 1$$

• To make poles *exactly* at the unit circle

$$y(k) + y(k-2) = -a_1y(k-1) + b_ou(k) + b_1u(k-1)$$

$$unknown parameters$$

• Y & A matrices will be different

Results 2

• Tested for Set-Point 0,

$$G_0(z) = \frac{4.534 \times 10^{-5} + 0.0001398z^{-1}}{1 - 1.999z^{-1} + z^{-2}}$$

• Poles

 $0.9997 \pm j 0.0257 \rightarrow |0.9997 \pm j 0.0257| = 1$

Closed-Loop Identification

• Input: *Disturbance*, Output: *x*

$$G_{CL}(z) = \frac{0.00296 + 8.902 \times 10^{-5} z^{-1}}{1 - 2.289 z^{-1} + 1.723 z^{-2} - 0.4331 z^{-3}}$$

• Poles

• Controller should be tuned!

Future Directions

- Horizontal Motion Dynamics
 - Maybe need of another sensor
 - Or, observable model -> Horizontal motion can be estimated
- Going to Continuous-time Analysis:
 - Study effect of discretization
- Improve Controller Design
 - More stable design

Final Remarks

- Acknowledgement:
 - Thanks for Prof. Doraiswami for constant advising
- Interesting Project!
 - Included many concepts together: Modeling, Magnetic Fields, Opamps, Nonlinearities, Numerical Methods, LabVIEW, Discrete-time Analysis, and of course Identification, etc.

THANKS!

•Q&A