
Relativistic Electrodynamics 
 
1-Introduction and review of special relativity theory 
During the nineteenth century the theory of electromagnetism was established and 
crowned by the Maxwell’s equations which associated electromagnetism with wave 
phenomenon and light. This formulation of the electromagnetic phenomenon seemed to 
be plausible except for one thing. Known wave phenomenon such as sound waves and 
other elastic wave required a medium of propagation. Such an analog was not existing 
yet for the new electromagnetic waves. For this reason the luminiferous ether was 
postulated to exist all over space to work as a medium for the propagation of the EM 
waves. The problem that accompanied the wave phenomenon of the EM fields is its 
invariance under Galilean transformation. Galilean transformation is the transformation 
of the coordinates between two reference frames in uniform motion with respect to each 
other. Assuming that one frame of reference K moves by a velocity V with respect to 
another frame K’ in the x direction, we find that the coordinates and velocities in both 
frames are related by the transformation relations:  
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Using these transformations, we find that the laws of classical mechanics take the same 
form in both frames. For example, if we have a system of interacting particle via two 

body interactions Vij, we find that the equation of motion ji
j
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i xxV

dt
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have the same form in K’ namely: ji
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both time and space coordinates we find that the wave equation is not invariant under 
such transformation. That was attributed to the nature of the wave propagation that 
require a transmitting medium and hence the wave equation is valid only in the frame of 
the medium. Thus the ether was viewed to play the same rule in electromagnetics that 
the air plays in sound waves though the apparent difference between the nature of the 
wave in both phenomena; the first consists of field oscillations while the second is 
mechanical vibrations. Attempts soon began to measure the speed of earth w.r.t the ether 
frame of reference. The most famous experiment in this regard is the Michelson-Morley 
experiment which yielded the most famous null result in physics. Many assumptions 
were assumed to justify the null results of these experiments such as the length 
contraction hypothesis and the Ritz’s emitter theory. Experiments trying to repeat the 
original ones with much higher accuracy didn’t stop up to this moment1. The results of 
most of the experiments are consistent with special relativity.  Einstein formulated his 
relativity theory based on two postulates: 
Postulate 1: All  the laws of physics are the same in all inertial frames of reference. 
Postulate 2: The speed of light is finite and independent of the motion of the source.  

                                                 
1 Some of the most recent experiments are: 

1- Trying to test the time dilation consequence of special relativity by sending a precise clock on 
board of future satellites 

2- Trying to repeat Kennedy-Thorndike experiment ( a modified version of Michelson-Morley 
experiment) using cryogenic cooled cavity lasers 

 



The first postulate was known for classical mechanics a long time ago and its validity 
for electromagnetic was the objective of the previous experiments. Einstein generalized 
it for all physical laws. It means that if two observers performed an experiment in 2 
different reference frames moving with constant relative velocity ( inertial frames ) they 
will get exactly the same results. In another way, one can not perform an experiment in 
his own frame of reference that enables him to determine his speed with respect to 
another frame of reference without referring to other frame.  This postulate has omitted 
the notion of absolute motion since according to it there is no absolute reference frame, 
all inertial frames are equivalent and have the same physics. Since Maxwell’s laws have 
the same form in any inertial frame with the same constants, the speed of 
electromagnetic waves i.e, light should be the same in all frames regardless of the speed 
of the source and this is the second postulate. This postulate modifies the set of 
transformation under which physical laws are invariant to include a ratio between the 
velocity of the frame and the speed of light, thus making physical laws invariant under 
Lorentz transformation rather than Galilean transformation as will be shown later. One 
of the most astonishing consequences of this theory is concept of relativity of 
simultaneity. Two events that happen simultaneously in one frame will not be 
simultaneous in another frame of reference. To illustrate this principle imagine this very 
simple example: a source moving with velocity v and emitting a light pulse in a 
direction normal to its motion.  In the frame of the source, the pulse will be traveling 
upwards by a velocity C, while in the frame of a stationary observer; the pulse will be 
traveling in an inclined direction by a velocity C. This velocity has a horizontal 
component v, and a vertical component 22 VC − .  When the pulse reaches a certain 
height ( this corresponds to an event that happens only once for both frames), the 
moving source will measure a smaller interval of elapsed time from the moment of firing 
the pulse since it moves with a larger vertical velocity than the stationary observer. In 
other words, the stationary observer will feel that his time is running slower than the 
moving observer. This is called time dilation. In other words, if we imagined a 
hypothetical clock that measures time absolutely without being affected by motion it 
will count extra time in the moving frame between the same 2 events than a stationary 
frame.2 By simple algebra it can be shown that the relation between the time measured 

by the moving observer t and the stationary one t0  is : 
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that the moving source emits two opposite pulses in two different directions as shown in 
figure (2), the pulses will be moving with the same velocity w.r.t both frames.  However 
if there are 2 points A,B at fixed positions in the stationary frames they will not be fixed 
at the source frame so the 2 pulses will reach them simultaneously in the first frame and 
not simultaneously in the 2nd frame.  The fact that the time is running slower in the 
moving frame while the speed of light is kept constant requires that the length scale in 
the moving frame be shorter too by the same ratio, this is called length contraction. 
Keeping these two facts in mind we find that the coordinate transformation between the 
two frames will not follow the Galilean transformations relations but the Lorentz 
relations. 

 
 
 
 
 
 

                                                 
2 One may argue here that the moving frame may consider itself stationary and the other traveling and thus 
its clock should count less time, but another one may reply that such clock doesn’t exist altogether !! 
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Fig. 1 A source of light is traveling to the left with respect to some stationary frame. 
 
 
 
 
 
 

Fig. 2. 
 
 
Note the interrelation between the two postulates: the first postulate enforces the 
constancy of the speed of light for Maxwell’s equations to be invariant and from the 
second postulate, Lorentz transformations are generated and when applied on Maxwell’s 
equations they show the sought invariance. Using the length contraction concept we can 
show that the Lorentz transformation relations between the coordinate systems of two 
inertial frames in relative motion in the x-axis direction by velocity v as shown in figure 
(3) are give by : 
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A direct result of these transformation relations is the relativistic velocity addition rule. 
If an object is moving in the frame K’ by velocity v’ = dx’/dt’, it can be shown by direct 
manipulation of the previous equations that the velocity in the same object in fame K is 
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+ .   For a relative velocity in a general direction v, the transformation of a general 

spatial vector r is done by dividing it into 2 parts normal and parallel to the velocity 
vector, for which the first is the same in both frames, and the other will be transformed 
as in the previous equation. As for the spatial coordinates, they can be divided into  
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Lorentz transformation can be written in matrix form as  
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µ xx where µ
νΛ  are the elements of the transformation 

matrix. In the first case where the frame K’ was moving in the x-axis direction, it can be 
shown that the transformation equation are equivalent to a rotation of the x, ict axis by 
an angle iФ where Ф =v/c. It can be shown also that the norm squared of the vector 

 ),( xctx =µ  .framesboth in  same  theis x(ct):as defined 22 −  If we considered the 
conservation of momentum in 2 different inertial frames using the new velocity addition 
rules we may discover that the usual expression of the momentum u=mv using the 
invariant mass m (the same in the two frames) leads to inconsistency. To resolve that 
inconsistency, the mass was assumed to be a relative quantity and affected as well by the 

same transformation 
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constitute part of the energy of the system ( rest energy). Hence, the total energy now 
constitutes both the kinetic energy and the rest energy : 42222 cmcpE += . 
 
2. Relativistic electrodynamics 
2.1 Basic relations 
All experiments that tried to measure the ratio of electron charge to its mass proved that 
the electric charge of the electron is an invariant quantity. The reason behind this 
invariance is still unkown, and the only proof is still experimental. Beginning from that 
invariance of charge let’s see how electric and magnetic fields will transform between 
different inertial frames.  
Imagine 2 inertial frames K, K’ in relative velocity v and a single charge q stands still in 
the first frame. We know that Maxwell’s equations apply in both frames, and hence we 
expect the application of Gauss law in its integral form to be verified in both frames. So 
let’s apply Gauss law on a box containing q and having its sides normal and parallel to 
v. In the first frame, we get ∫ = oqdAE ε/. . Now let’s apply it in the second frame K’. 
We have to be cautious here since the sides of the box parallel to v will shrink by the 

factor  2
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electric field in the direction normal v changes by the inverse of the same ratio to 
compensate the length contraction, while the component parallel to v is kept constant. 
Hence: ⊥⊥ = EE γ' ,  E’// = E//.  

What about the effect of the magnetic field in frame K on the electric field of K’? Let’s 
imagine a charge at rest in K’ while moving in the static magnetic field of K, what will 
this charge feel? It will feel Lorentz force given by F=q v/c ×B. when a charge at rest 
feels a force that means that an electric field causing this force should exist in K’. Thus 
the total electric field in K’ is given by : 

 



To write the magnetic field in K’ in terms of fields in K we will use symmetry 
considerations. First we can write directly the electric field in K as 

)''( ⊥⊥⊥ ×−= BVEE γ   , by substitution in the previous equation we get: 

⊥⊥⊥⊥ ×+×−= BVBVEE γγγ ''' 22 .    By solving for B’ we get: 
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−= γ .  Since the parallel component of the magnetic field results from 

currents flowing normal to the direction of velocity which are the same in both frames, 
the parallel components are also the same. Hence //// ' BB = .   Note: these transformations 
hold in SI units. For Gaussian units, 2c  will be replaced by c  in the equation for '⊥B  
while v will be replaced by v/c in the equation for '⊥E . 
From the electromagnetic field transformation we see that E, B don’t transform like the 
spatial part of a four vector so we need a more complex representation to represent the 
EM field transformation in a form similar to the four vector transformation mentioned in 
the last section ; this is the tensor notation. The electromagnetic field tensor is a single 
entity that combines both the electric and magnetic field components. If we defined the 
electromagnetic field tensor  ( vF µ )in Gaussian units as  

 
we can see that the matrix components transform as:  
 
where the elements µ

νΛ  are the same elements of the Lorentz transformation of four 
vectors. Thus for a relative velocity in the x-direction we can see that the 
electromagnetic field tensor in frame K’ expressed as : 

 
is equivalent to: 

 
And this yields immediately: 

 
By defining the four current ),,,( zyx JJJJ ρµ =  and the dual electromagnetic field 

tensor ( vGµ ) as 
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We can write the four maxwell’s equations in the following two simple equations: 
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the invariance of Maxwell’s equations under Lorentz transformation. Given Maxwell’s 

equations in frame K as: µ
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electromagnetic field tensors F’, G’ in frame K’ obey the equations: '
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And writing the Maxwell’s equations in K as: α
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equation is covariant under Lorentz transformation. By a similar way the second 
Maxwell’s equation can be proved covariant. 
Note: The constants oo µε , are assumed to have the same values in all inertial frames 
since they are properties  of free space. 
 
Four-vector potential 
Since we have written Maxwell’s equation in a terms of the electromagnetic tensor let’s 
try to define a four vector potential αA  that satisfies the covariant form: 0=∂ α

α A . It’s 
clear that this vector should consist of the electric potential Φ   and the magnetic 
potential A. But we know that the magnetic potential can be defined upto an arbitrary 
gradient field while the electric potential can be defined upto an additive constant. That 
means that we have some freedom in choosing A and Φ  . A Lorenz gauge is chosen as 
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. This implies that a four vector potential defined as (Φ ,A) satisfies 
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. By substituting by this gauge in Maxwell’s equations we get the potential 

wave equations: 
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Which can be combined in terms of four vector quantities into the single equation: 
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With this definition of the four vector potential we can write the x-components of E,B as 
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Which can be generalized to write the electromagnetic field tensor in terms of the four-
vector potential as: αββααβ AAF ∂−∂= . 
 
2.2 Relativistic Electromagnetic Lagrangian 
Lagrangian mechanics provides another mean to describe the kinematics of any system 
in a different way than Newtonian mechanics. An action for any system is defined as the 
integral of the lagrangian functional of the path the system may take in the space of 
solutions.  

 
The solution ( or the path the system will take ) is the one that makes the value of the 
action an extreme. (i.e,  ). This leads to the Euler’s-Lagrange equations which 
fully describe the motion of the system 

 
The equation that describe the motion of a charged particle interacting with an 

electromagnetic field is: ⎥⎦
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dp . Any Lagrangian formulation should yield 

an equivalent equation of motion. So, let’s seek the proper Lagrangian that satisfies this 
requirement in addition to the relativistic requirements. The principle of relativity 
requires that the action should be an extreme in all inertial frames. If the action has a 
value in one frame lower than in another frame, that means our definition of the 
Lagrangian in the second frame didn’t yield a minimum value, and the system could 
have acquired the relative velocity between the two frames to achieve a lower action 
and that violates the principle of least action in the second frame. Hence the Lagrangian 
should be the same in all inertial frames. Let’s define the action in terms of the proper 

time (the time in the inertial frame of the system) as τγ
τ

τ
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  hence the quantity Lγ  

should be invariant in all inertial frames. (In a frame different than the inertial frame the 
Euler equations will be written in terms of L not Lγ ). For a free particle in a 
nonrelativistic proplem we know that the Lagrangian is the kinetic energy of the 

particles which equals :  when the equation of motion is written we obtain 
Newton’s first law, namely: . Now a relativistic Lagrangian should yield 
the conservation law of momentum in the relativistic form( ). Where m is 
the rest mass of the particle. Since the quantity Lγ is lorentz invariant we can see that L 
takes the form 1−γα  where α  is constant. The logical choice of α  is 2mc−  where m 
is the rest mass of the particle. By writing the Euler equation for this L we get the 



correct form for conservation of momentum. 0)( =mu
dt
d γ . Thus  . 

Now we have to add to the lagrangian a term that describes the interaction energy 
between a single charge and the electromagnetic field. We know that the classical 
interaction energy for a distribution of charges and currents is expressed as: 

We want to add a term 
analogous to this in the Lagrangian which when multiplied by γ becomes an invariant 
quantity.(i.e Lint should be γ -1 multiplied by a lorentz invariant quantity. Returning to 

Gaussian units, a logical choice is: 
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total lagrangian now ( excluding the energy of the fields) becomes 

. By applying Euler’s equations on this Lagrangian, 

the equation of motion for the particle 
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note here that this Lgrangian doesn’t consider the finite speed of propagation of 
electromagnetic potentials. By writing the Hamiltonian of the charged particle, defined 

by H=P.u-L and by defining the conjugate momentum  ii
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that the Hamiltonian of the particle is: Φ++−= ecmeAcPH 422)( . By letting the 

total energy be W and squaring both sides, we get  2222 )()()( mceAcPeW =−−Φ−  
which can be rewritten in terms of the four momentum vectors as 2)(mcPP =α

α  where 

)),(1(),( A
c
ePeW

c
p

c
Ep −Φ−==α . This is called the minimal substitution. Now that 

we derived the Lagrangian for a particle interacting with an electromagnetic field let’s 
try to find the lagrangian for the field component themselves ( βαF  ) which when used 
in Euler-Lagrange equations leads to the equations of motion to the field tensor found 
before (Maxwell’s equations). First we note that when we treat continuous field 
systems by the Lagrangian approach, the finite number of coordinates qi(t) are replaced 
by an infinite number of degrees of freedom. For each point in space time αX a limited 
number of field components )(xKφ  are assigned. This field changes continuously 

through space and time. Thus Euler equations takes the form: 
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lagrangian again should be a Lorentz invariant quantity (i.e, Lorentz scalar). A 
proposed one is. 
 
 
 
 To be able to apply Euler equation, we will write the field tensor in terms of the 
magnetic potential αββααβ AAF ∂−∂= , hence the Lagrangian becomes:  



 
And Euler equations takes the form: 

 
 
 
Solving this equation leads to the Maxwell’s equations: 

 
 
Putting it in in the tensor form we get  
 
which is the same equation shown in the previous section. 
If we expanded the four vector potential and current and the EM tensor in the 
Lagrangian we can write the Lagrangian as 

 

 
 
That means that E2- c2B2 is an invariant quantity.  
Now let’s try to apply some of the concepts learned so far to some simple problems.  

Consider two electrons moving parallel to each other with the same velocity v w.r.t a 
stationary observer. The interaction between the 2 electrons should yield the same kind 
of motion subjected to time dilation effects when analyzed from both frames the 
stationary frame and the moving frame. In the frame of the 2 electorns each one of them 

is subjected to a Coulomb repulsive force of magnitude 2

2
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. Thus each electron will 

has an acceleration in the y-axis of magnitude F/m and its y-component will be of the 
form a*t2/2. In the second frame both electrons are subject to a Lorentz force 
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the motion of the charge in the normal direction using the Newton equation F=ma and 
taking care of the relativistic transformation of mass γmm ='  we find 
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ydmmaF γγ == . Where F’ is the force in the moving frame. And since we know 

that the time interval in the moving frame dt’ is related to the time interval in the 
stationary frame dt by dtdt γ='  we obtain the same equation of motion in the first frame 
by transforming the time in the second derivative. Thus the equation of motion is the 
same in both frames subjected to the time dilation phenomenon. We conclude from this 
example that a pure electrostatic phenomenon in one frame may be a combination of 
both electric and magnetic in another frame. Notice that a nonrelativistic treatmetnt of 



this problem would yield two different forces in both frames and hence two different 
equations of motion. Some authors even interpret the force between two current carrying 
conductors as a relativistic effect due to the movement of the charges inside the 
conductor. (e.g, Purcell in his “Electricity and Magnetism”).  
 
Conclusion 
 
The field of classical electrodynamics still has a lot to be done for it.  In the most general 
case, two charges interacting with each other are accelerated. Neither of the charges 
exists in an inertial frame, and both charges will radiate according to Maxwell’s 
equations. One deficiency of classical electrodynamics in its current formalism is that 
we need two fields ( electric and magnetic that are calculated separately) to describe the 
force acting on a moving charge.  I think we should seek a single force relating the 
interaction between two charges in the most general situation in terms of their positions 
and relative velocities. The fact that the electric field emanating from a uniformly 
moving charge is always radial and emanates from the current position of the charge 
(not a retarded position) is somewhat surprising. It implies that that several pieces of 
information are transmitted along with the electromagnetic field ( at the speed of light). I 
hope that we could reach a more general formulation of the interaction between two 
charges that is valid even in the non-inertial frames of the charges. 
The electric force and magnetic force seem to have separate physical origins in current 
electrodynamics. One results from the mere existence of charges and another results 
from the motion of charges. I think a complete unification of electricity and magnetism 
should interpret both electric and magnetic forces from a single physical origin.  
Though the force of gravity is similar to Coulomb’s force in form, we don’t see the 
effect of magnetic force between moving masses as we have it between moving charges. 
A general relativistic prediction called frame dragging predicts such type of interaction.  
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