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Abstract 
 

The Planck’s law of blackbody radiation is derived in several methods in this paper. The 

original Planck’s derivation in his 1900 paper, the derivation by Einstein, and another 

derivation based on the Bose-Einstein statistics are reviewed with comments on each 

derivation. Statistical properties of radiation are briefly reviewed in the second part of the 

paper. Different concepts of photon statistics are applied on the thermal (chaotic) light and 

laser light. Nonclassical properties of light that manifest its quantum nature are briefly 

highlighted with a short review of the experimental evidence embodied in ……….. 

 
 
 
 
 
 
 
 
 
 



1-Introduction and historical perspective 
 

It was Robert Kirchhoff who first argued in 1859 that the thermal radiation of the blackbody 

was of a fundamental nature.1 Since that time, several attempts were made to derive a precise 

relation that matches the experimental results. Wien, suggested that the radiation density per 

unit frequency per unit volume depended on frequency and temperature by the relation u(f,T) 

= af3exp(bf/T). This law corresponded well with the experiment but had no theoretical 

foundation1. Rayleigh and James Jeans analyzed the problem from a classical point of view 

and they came up with a relation that was drastically different than experiment (the 

ultraviolet catastrophe). This contradiction was an indication of some problems in classical 

physics. It was Max Planck who first reached a sound proof of the radiation density formula 

based on the statistical definition of the entropy and its relation to the energy and 

temperature. Planck had to assume that the energies of the harmonic oscillators that emit the 

radiation are quantized to arrive at the correct relation that describes the experimental 

observations at short and long wavelengths.  

Einstein’s work on the photoelectric effect and the specific heat of metals, has drawn the 

attention to the role that the theory of quanta may play in physics. As a response to these 

radical developments in physics, a conference was held in Solvay in 1911, on "radiation 

theory and the quanta" to discuss the emerging quantum theory. Henri Poincare was one of 

the attendants of this conference. Although he spent most of his life as a classical physicist 

and a prominent mathematician, he became excited by the idea of quantization. Unsatisfied 

by Planck’s proof of the blackbody radiation formula, he worked on his own proof. In his last 

memoir, written six months before his death, Poincare tried to prove that not only 

quantization was a sufficient condition for deriving the blackbody radiation formula, but also 

a necessary condition. The blackbody radiation formula remains today as important as it was 

in the beginning of the twentieth century, since it has opened the door for ‘further 

quantization’ and the beginning of the quantum mechanics.  

 
2-Planck’s derivation  
 
In his famous paper, Planck used the model of harmonic oscillators for the frequencies of the 

radiation. His motivation to use the model of a harmonic oscillator may be to model the 

dipole radiation where charge oscillation leads to the emission of electromagnetic waves. It 

was known that such Hertzian resonators by virtue of their vibration, radiate hertzian( 

Electromagnetic) waves. 7 The simplest mechanical model that has oscillation is the harmonic 

oscillator. These oscillators were thought to exist in the walls of the cavity (what we now 

know to be atoms). It’s not clear to me however why Planck opted to use N harmonic 



oscillator for each frequency and not a single one. Planck started by stating cleverly that a 

single harmonic oscillator with constant phase and amplitude has zero entropy since it’s in 

complete order (and entropy is a measure of the amount of disorder). In his own words, 

Planck said: “Entropy depends on disorder and this disorder, according to the 

electromagnetic theory of radiation for the monochromatic vibrations of a resonator when 

situated in a permanent stationary radiation field, depends on the irregularity with which it 

constantly changes its amplitude and phase, provided one considers time intervals large 

compared to the time of one vibration but small compared to the duration of a measurement. 

If amplitude and phase both remained absolutely constant, which means completely 

homogeneous vibrations, no entropy could exist and the vibrational energy would have to be 

completely free to be converted into work.” However as we will see later at the end of his 

proof, the single harmonic oscillator turned out to have a nonzero entropy. To prove his 

famous relation, Planck had to quantize the energy of the oscillators and consider many 

harmonic oscillators instead of only one and calculate the entropy by counting the number of 

ways by which the total energy can be distributed among these oscillators( the number of 

possible microstates).  

By assuming that the energy quantum = ε and the total energy UN=P ε, the number of ways 

to distribute P quanta among N distinguishable oscillators is given by: 
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Then the enropy directly follows from Boltzmann’s law as SN= k log R  

SN = k { (N + P) log (N + P) - N log N - P log P}  and in terms of U, e the entropy can be 

written as: 

 
 

And the entropy of a single harmonic oscillator is given by the previous quantity divided by 

N, namely: 

 
 

How did Planck explain the source of the entropy (disorder) in the single oscillator, in 

contrast to what he mentioned in the beginning of his article? If he was asked that question 

after 1927, he may have said it is due to the uncertainty relation between the two conjugate 



variable P, Q in the harmonic oscillator, but what if he was asked in 1900 ?? How could he 

reach the same result if he starte by a single harmonic oscillator (i.e, N=1) ?? 

A direct application of the relation between Temperature, entropy, and Energy of a single 

oscillator dU
dS

=
θ
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 to the previous equation yields directly 1−
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. Then as Einstein did, 

Planck made use of Wien’s law to derive the specific relation between the quantum ε 

and the frequency of the oscillator ν. Wien’s law implies that the relation between the energy 

density u, and the frequency and temperatures is given by:  

 
Using the relation between the radiation density and the energy of the single oscillator that 

Planck derived in an earlier paper U
c

u 3

28πν
= , he could rewrite Wien’s law in the form  

 
By comparing this relation with the expression for U derived earlier, it’s seen that the energy 

of the smallest quantum is given by νε h= , where h is a universal constant. 

Combining the previous result and the expression of the radiation density  which is the 

energy per unit volume per unit frequency interval we obtain the famous Planck law 

   
In the time Planck intrduced this assumption of the quantization of the energy of a harmonic 

oscillator, nobody noticed how profound this assumption was in the physics. I don’t why 

didn’t Planck continue in the same line of thought and ask himself immediately how or why 

was the energy of the harmonic oscillator quantized? It was not before 25 years later that the 

real reason of quantizing the energy of the harmonic oscillator was rigoursly derived from the 

postulates of quantum mechanics.  

 
3- Einstein derivation of Planck’s radiation law 
 
Although the famous paper in which Einstein introduced the A, B coefficients was written 

mainly to derive the Planck’s radiation law for the blackbody problem, this derivation is 

usually forgotten and the paper is remembered only for laying the foundations for the 

operation of the laser. The derivation goes as follows:  

Einstein assumed that the atoms of the walls of the blackbody are two-level atoms where 

they can absorb or emit quanta of energy equal the same amount as the difference between 

the two levels. Each atom has an absorption and emission probability Pa, Pe given by  



 

Where νρ  is the density of electromagnetic radiation in the cavity, Ba and Be are 

undetermined coefficients for absorption and stimulated emission, respectively, and A is the 

coefficient for spontaneous emission.a  Let the number of atoms per unit volume in the 

excited state and ground state be ne , ng respectively. The detailed balance condition which 

results from the thermal equilibrium between the radiation and the atoms states that the 

probability that an atom in the ground state gets excited equals the probability that an excited 

atom emits the photon and decays to the ground state. This condition can be expressed as: 

 
Then Einstein assumed that the atoms themselves are in thermal equilibrium b and he used 

the partition function derived from the canonical ensemble to write the ratio between ne and 

ng as   

 

Solving the four previous equations for νρ  we find that  

 
Which is indeed similar to Planck’s formula.  Next, Einstein made use of the results reached 

by Rayleigh about the relation between the radiation density and the frequency at long 

wavelengths and high temperatures namely  

 
This limit can be indeed satisfied if we choose Ba=Be=B where the radiation density will be 

in the form  kT
BA ερν /=

. To determine the dependence of A/B and ε  on frequency, 

Einstein used another law that states that νρ  has a scaling dependence on the variables υ and 

T,( Wien’s displacement law) of the form 

                                                 
a 6A. Einstein, ‘‘Zur Quantentheorie der Strahlung,’’ Phys. Z. 18, 121–128 ~1917 
 
b The atoms of course are continuously absorbing and emitting photons, but since they are in equilibrium with 
the radiation, their total energy is fixed and hence they can be considered as an isolated ensemble.  



 
To satisfy this equation the only choices for A/B and ε  will be  

 
Where h, α are universal constants. Finally the energy density of the radiation will look like 
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We note here that the nonclassical assumption in Einstein derivation is the stationary energy 

states of the atom.9 

It’s worth mentioning here as we noted in the Planck’s derivation that the elements of the 

canonical ensemble (which are atoms in our case) have to be able to exchange the quanta of 

energy between each other. This is done in our case by atoms emitting photons that are 

absorbed by other atoms. We note also that the atoms were assumed to have two level only 

while the fact that the spectrum of the blackbody radiation is continuous in frequency 

necessitates that all frequency resonances have to be present in the atoms of the wall and not 

only a discrete set of them. I think this problem is resolved by the presence of broadening 

mechanisms that leads eventually to the continuous spectrum. But shouldn’t the different 

intensities of different lines affect the radiation spectrum of the blackbody? 

 

3-Third derivation using Bose-Einstein statistics 
 
A third derivation in which Pathria in his book attributed to Einstein, uses the Bose-Einstein 

statistics for the grand canonical ensemble. Here the radiation in the cavity is treated as a gas 

of indistinguishable photons obeying Bose statistics, namely the expectation number of the 

photons occupying a certain energy level ε is given by 
1

1
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comments are in order here. First, the postulate of equal apriori probabilities implies that the 

system will be in the macrostate (e.g, E) that has the largest number of microstates. This is 

based on the assumption that at the same macrostate, the system can jump freely between 

different allowed microstates without restriction. For the case of ideal gas, these microstates 

may correspond to different energy distributions between the particles (or different space 

configurations). This of course requires a means of energy transfer between the particles 

which truly exists in the ideal gas through collisions. But what about the system of bosonic 

photons we have here? How can the system jump from one microstate to another and how 



can the photons exchange energy with one another?c As for the chemical potential, Pathria 

set it to zero.  He said that because the number of photons is indefinite since photons are 

being absorbed and emitted from the walls continously, but isn't this the case for the grand 

canonical ensemble? Moreover I expect that at equilibrium the number of photons is fixed 

and not indefinite as Pathria stated, and hence we should use the canonical distribution rather 

than the grand canonical. However regardless of the type of the ensemble we use, the most 

probable value for εn  calculated without referring to a certain ensemble has the same value 

as >< εn . But still I couldn’t find a satisfactory explanation of setting the chemical potential 

of photons to zero. Next steps in this derivations are to calculate the density of states 
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 as ωε =  we get exactly the same relation of the radiation density as that of Planck.   

It’s interesting that the assumption of the quantized nature of radiation inside the cavity (that 

light waves are made up of particles called photons) is sufficient to impose the quantized 

energy levels on atoms in equilibrium with light.  
 

4- Poincaré's last memoir on the quantum discontinuity of nature  
 
Here I’m going to comment on another proof of the quantum nature of light initiated by the 

famous French mathematician and physicist Henri Poincare. Since Poincare spent most of his 

life as a certified master of classical physics one would expect that he would be very 

reluctant at the age of 57 to change his mind about the nature of continuity of matter and 

radiation. However upon attending the Solvay conference that was held specially to 

investigate the new ideas of the quantum nature of light and to shed more light on the 

blackbody radiation, the “most mysterious phenomenon and a most difficult one to unveil” 

he was very enthusiastic upon the new idea and actively participated on the discussions. 

After the conference, Poincare returned to Paris and became engaged with the quantum 

problem. In accord to my objection to the third proof given above, Poincare considered 

Planck’s proof lacking a very important component, the mechanism to achieve equilibrium 

between in the system of harmonic oscillators. In his own words, Poincare wrote: “For a 

                                                 
cLet alone other systems we studied in the course like a system of magnetic dipoles for example. 
d Pathria,7.2.6 



(equilibrium) distribution to take place between the resonators of different wavelengths 

whose oscillations are the cause of radiation, the resonators must be capable of exchanging 

their energy. Otherwise, the initial distribution will persist indefinitely and this initial 

distribution is arbitrary, there could be no unique law of radiation.”   

However, I don’t agree with that since Planck had to assume only that harmonic oscillators of 

the same frequency are in equilibrium. . In this case energy can be transferred between them 

without any problem since they are in resonance with one another There is no need to find a 

mechanism for exchanging energy between oscillators of different frequencies. To provide 

this mechanism, Poincare modeled the interaction between harmonic oscillators as mediated 

by a medium of freely moving atoms which collide with the resonators.  
 

5- Quantum statistics of photons 
 
The quantum first order degree of coherence which identifies the degree of correlation 

between the light fields at two space time points (r1,t1) and (r2,t2) is defined by  
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Where )(),( 2211 trEtrE +− are the electric field operators.  The subscripts designating a certain 

mode and polarization of the field have been omitted to simplify notation. A fuller 

representation of the electric field operator is given by  
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The expectation values are calculated using the density operator,  

( ))()( )()( 11111111 trEtrETrtrEtrE +−+− = ρ  

The quantity )( 22,11
)1( trtrg signifies the ability of the light at the two space time points to form 

interference fringes when superimposed. By expanding the expressions of the field operator, 

it can be seen that the coherence function is a function of the parameter 
c

rrtt 21
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−
+−=τ , 

hence it can be written for short as )()1( τg . First order coherence has similar properties in 

classical and quantum representations of light. )()1( τg  has the same numerical range in both 

schemes, namely 0)(1 )1( ≥≥ τg . The interference pattern which is a result of the first order 

coherence can be obtained using both treatments. However more striking differences occur in 

measurements that depend on second order coherence.3 

In a similar way the quantum degree of second order coherence is defined as  
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The second order coherence defines the correlation between the light intensities in two 

different space time points. With intensities measured by phototubes, the correlation is 

proportional to the transition rate of the joint absorption of photons at the two space time 

points.3 Note that the sequence of operators matters in this definition, i.e, annihilation 

operators to the left. The second order coherence can be measured in a photon beam at the 

same loction using a single photon detector by counting the numbers of photons registered by 

the detector in brief in two brief intervals separated by timeτ  , then the second order 

coherence is given by the correlation between the photon numbers as 
2)2( /)()0()( nnng ττ =  

 

6-Thermal (chaotic) photon states 
 
Since photons are bosons, they follow Bose-Einstein statistics and the probability of 

occupying the mode of energy ε is given by (See Pathria 6.4.10)  
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The probability to detect n photons in a small  time τ , P(n) can be written as 
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Hence, the density operator of a single mode of thermal (blackbody) radiation is described by  

 

Where 0)()!( 2
1

nann +−
=  and n is the mean number of photons detected in a certain time 

(τ) and is given by  

 
And Z is the partition function given by : 

 

And n  is the number state of a single mode 

 



 

The variance of the photon number in thermal states is given by  

 
 

7-Photon statistics of a coherent source 
 
A coherent source emits photons in states of a coherent superposition of number states in the 

form 

 

Where α in general is a complex number. Laser beams are best characterized by these states 

since they have the minimum amount of uncertainty in the phase and amplitude. The mean 

number of photons in the coherent states n  is given by the relation  

And the probability to detect n photons P(n) is  

 
We notice that this is a Poissonian distribution. We remember that this distribution is 

characteristic of processes involving the occurrence of discrete events happening independent 

of each other. Thus, in a coherent state photons behave like they were uncorrelated classical 

objects! In contrast to naive expectations, the photons in a (single mode) laser (and well 

above the threshold) arrive in a random fashion; in particular they do not “ride” on the 

electrical field maxima.8 The counting statistics are the same as the statistics of telephone 

calls arriving at a switchboard or web pages requests from a web server. 

As in possonian distribution, the variance of the number of detected photons n∆ is given by 

the relation nn =∆ 2 . A coherent state of radiation is first order coherent, that is 

1)()1( =τg for all pairs of space time points. A comparison between the photo-count 

distribution of the thermal (chaotic) light and the coherent light is illustrated in figure( ) 

 



The photo-count distribution in this graph is obtained experimentally by letting the light fall 

on a photo-detector through a shutter that is open for a very short interval. And counting the 

number of photons registered by the photo-detector.  This measurement is repeated many 

times and a time delay is allowed between successive measurements. This delay should be 

long compared to the coherent time of the light.  

It’s interesting to note that the photon count distribution of both coherent and chaotic light 

can also be obtained from other arguments as Loudon did in 6.6, 6.7 in his book. The only 

assumption made are that the number of photons detected by the photodetctor is proportional 

to the intensity of the light, and another assumption pertinent to the type of radiation. For 

coherent radiation the other assumption is that the intensity of light is independent of time, 

while for chaotic light the intensity has a Gaussian distribution and the averaging process 

over time is equivalent to the ensemble averging by the ergodicity theorem. The derivation is 

lengthy and can be reviewed from Loudon’s book. 

It’s worth mentioning that thermal photon statistics can be obtained by a superposition of 

many coherent states  in which α changes randomly in Gaussian distribution given by 

 
And hence the density operator will be given by  

 

Where n  is given by 

 
A comparison between the distribution of α in the coherent (laser) source and the thermal 

source is shown in figure() 

 
Another important aspect in the comparison between chaotic light and laser is the bunching 

effect.  



Photon bunching is the tendency of photons to group together in bunches, if the photodetctor 

detected n photons, it’s more probable that these n photons reached the photodetector close to 

each other than spread in time. 

As shown in figure ( ), chaotic light has strong correlation )()2( τg  at shorter times that 

decreases as τ increases, while the photons of the laser beam arrive at the photodetector 

uncorrelated-as mentioned before- an exhibits no bunching.  

 
 

8- Non-classical properties of light  
Now we turn our attention to two other distributions of light that are manifestations of certain 

nonclassical states of light, namely photon anti-bunching and sub-poissonian photon 

statistics.  

Anti-bunching is the opposite effect i.e., the photons prefer to come not too close. In a 

quantitative manner, photon anti-bunching occurs of the second order coherence increases 

from its initial value at 0=τ 11 or equivalently  

 

Another criterion for photon anti-bunching is 0)0(1 )2( ≥> g  

Histogram of time delays between consecutive photon pairs in photon anti-bunched beam is 

shown in figure() 



 
The phenomenon of anti-bunching or anti-correlation is used as an evidence for the quantum 

nature of radiation in some experiments.12  

Unlike Poissonian photon statistics, sub-Poisson photon statistics is a photon number 

distribution for which the variance is less than the mean and super-Poisson statistics is a 

photon number distribution for which the variance is greater than the mean. Both photon 

count statistics compared to Poisson statistics are shown in the figure() 

It has been shown by Mandel and Zou 10 that these two nonclassical phenomena are not 

related and needn’t occur together as it was thought previously by some authors.   
 
 

9-Conclusion 
 
The quantization of the electromagnetic energy, had the profound impact to quantize many 

other quantities. 
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