R = 8.314 J mol^{-1} K^{-1} = 0.08206 L atmK^{-1} mol^{-1} = 0.08314 L bar K^{-1} mol^{-1} N_{A} = 6.022 x 10^{23} mol^{-1} k_{B} = 1.381 x 10^{-23} J K^{-1} h = 6.626 x 10^{-34} J s F = 96,500 C mol^{-1} c = 2.998 x 10^{8} m s^{-1} g = 9.81 m s^{-2} B = 0.51mol^{-1/2}dm^{3/2} (in H_{2}O, 25^{o}C) Sequential reactions: [B]=(k_{1}/(k_{2}-k_{-1})) f(t)[A]_{0} f(t)=exp(-k_{1}t)-exp(-k_{2}t) Parallel reactions: Φ_{i} = k_{i}/S Where S is the sum of all rate constants of the paral-lel reactions Note: Quantum yield/efficiency = Φ = moles of product formed / moles of photons absorbed | 1dm^{3 }= 1 L 1dm^{3 }= 1000 cm^{3} 1 J = 1 kg m^{2} s^{-2} 1 atm = 1.101325 x 10^{5} Pa 1 atm = 760 mmHg 1 Torr = 1 mmHg 1 Torr = 133.322 Pa 1 bar = 10^{5} Pa 1 nm = 10^{-9} m Eyring equation: k =k_{B}T/(hc^{0}) x f f =exp(ΔS^{#}/R) x x exp(-ΔH^{#}/RT) ln(1 - θ) = -θ if θ << 1 | E = hυ c =υλ PV =nRT ΔG = ΔH - TΔS k = A k = A = e (k_{B}T/h) exp (Δ^{‡}S/R)
k = E_{a} = Δ^{≠}H^{o}-PΔ^{≠}V^{o} + RT (sol) = Δ^{≠}H^{o}-ΣνRT + RT (gas) log k = log k_{o}+ 1.02 z_{A}z_{B} log k = log k_{o }- ΔG^{o }= - RT ln K_{c} υ = θ = KP/(1 + KP), at T=const t_{f} = (k_{f} +k_{q}[Q])^{-1},^{ }Q is quencher |