R = 8.314 J mol-1 K-1 =0.08206 L atmK-1 mol-1 = 0.08314 L bar K-1 mol-1 NA = 6.022 x 1023 mol-1 kB = 1.381 x 10-23 J K-1 h = 6.626 x 10-34 J s F = 96,485 C mol-1 c = 2.998 x 108 m s-1 g = 9.81 m s-2 e = 1.6022 x 10-19 C εo = 8.854 x 10-12 C2 J-1 m-1 B = 0.51 mol-1/2 dm3/2 (in H2O, 25oC) Other Units 1dm3 =1 L 1dm3 =1000 cm3 1 J = 1 kg m2 s-2 1 atm =1.01325 x 105 Pa 1 atm = 760 mmHg 1 Torr = 1 mmHg 1 Torr = 133.322 Pa 1 bar = 105 Pa E = hυ c =υλ PV =nRT (RT)/F = 25.6926 mV at 25oC ln(x)/log10(x) = 2.30259 for all x ln(1 - θ) = -θ if θ << 1 Quadratic equation: a x2 + b x + c = 0 solutions: x1,2 = (1/2a)[ - b ± (b2 - 4ac)1/2 ] RT/F = 25.70 mV(at 25oC for ln) = 59.16 mV(at 25oC for log10) Michaelis - Menten equation: (1/R0)=(1/Rmax) + (Km/Rmax)x(1/[S]0) Lindemann mechanism: kuni = k1k2[M](k-1[M] + k2)-1 Langmuir isotherm: θ = KP/(1 + KP) 1/Ro = 1/Rmax + (Km/Rmax) (1/[S]o) Sequential reactions: [B]=(k1/(k2-k-1)) f(t)[A]0 f(t)=exp(-k1t)-exp(-k2t) Note: Quantum yield/efficiency = Φ = moles of product formed / moles of photons absorbed | and  Λm = Λom - K (c/co)1/2 (strong) 1/Λm = 1/Λom + cΛm /[(Λom)2 Ka ] (weak) ΔGosolvation =(1/εr - 1)z2e2NA/(8πεor) ΔG = -nFE and thus ΔGo = -nFEo ΔS = nF(dE/dt)P a±m+n = a+ma-n for AmBn κ = [2e2NA x (1000 L m-3)/(εokBT)]1/2 x [ρsolvent I/εr]1/2 EoAgCl/Ag = +0.222 V k = A  k = Ea = Δ≠Ho-PΔ≠Vo + RT (sol) = Δ≠Ho-ΣνRT + RT (gas) ΔG# = ΔH#-TΔS# t1/2 = (ln 2)/k (1st order) fluorescence lifetime tf = (kf +kq[Q])-1 Ro = k2[S]o[E]0/([S]o + Km), Km = (k-1 + k2)/k1 k2[E]0 = Rmax = V D = (1/3) vave λ κ = (1/3) (CV,m/NA) vave Np λ PV = nRT = (N/NA)RT, (CV,m/NA) = (3/2) kB η = (1/3) vaveNpλm f = 6πηr = kBT/D vave = (8RT/(πM))1/2 Npλ = 1/((√2)σ), λ = RT/(PNA(√2)σ) Np = (N/V) = PNA/(RT) σ = πd2 xrms = √(2Dt) (1-Dimension) rrms = √(6Dt) (3-Dimension) Poisseuille equation: (ΔV/Δt) = (πr4/(8η)) ΔP/ ΔL Stokes-Einstein equation: D = kBT/(6π ηr) if r(particle) >> r(solvent molecule) Ostwald viscosimeter: η = Aρt, Capillary rise: h = 2γ/(ρgr) |