EE340-Lab [151] sec \#52 Lab Quiz: \#2 9 Nov 2015

Name: SOLUTION
ID: \qquad Grade: \qquad

Problem 1).

a) A long conductor wire is placed on the y-axis as shown in the picture below. The magnetic field B at point $\mathrm{P}(3 \mathrm{~cm}$ below the wire $)$ is measured to be $5 \times 10^{-5} T$ and points out of the page.
Determine:

1. The magnitude and direction of the current I in the wire?

$$
\begin{aligned}
|\bar{B}|=\frac{\mu_{0} I}{2 \pi r} & \Rightarrow I=\frac{|\bar{B}| 2 \pi r}{\mu_{0}} \\
& =\frac{5 \times 10^{-5}(2 \pi)\left(3 \times 10^{-2}\right)}{4 \pi \times 10^{-7}}=7.5 \mathrm{~A}
\end{aligned}
$$

Direction: by right hand rule (left)

b) Two long parallel wires, carrying the same magnitude of current I, are 4 cm apart as shown in the picture below. The magnetic field B at $x=2 \mathrm{~cm}$ measured to be $4 \times 10^{-5} \mathrm{~T}$ and points out of the page. Determine:

1. The Magnitude of the current I,
2. Plot the direction of the currents on the plot
$|\bar{B}|=\frac{\mu_{0} I}{2 \pi x}-\frac{\mu_{0} I}{2 \pi(x-a)}=\frac{2 \mu_{0} I}{2 \pi(2 \mathrm{~cm})}=\frac{\mu_{0} I}{\pi(2 \mathrm{~cm})}$
$I=\frac{|\bar{B}| \pi(2 \mathrm{~cm})}{\mu_{0}}=\frac{4 \times 10^{-5}(\pi)\left(2 \times 10^{-2}\right)}{4 \pi \times 10^{-7}}=2 \mathrm{~A}$
Opposite direction, right hand rule.

Page $\mathbf{1}$ of $\mathbf{4}$

Problem 2).

a) A wire carrying current is bent in the form of a circular loop of diameter 12 cm , the number of turns is 2 and the measured magnetic field at the center when the directions of the current clockwise and counterclockwise was: $0.03 \mathrm{mT},-0.07 \mathrm{mT}$ respectfily.
Calculate the magnitude of the current in the circular loop.
$|\bar{B}(0)|=\frac{\left|B^{+}\right|+\left|B^{-}\right|}{2}$ "avarege" $=\frac{0.03+0.07}{2}=0.05 \mathrm{mT}$
$|\bar{B}(0)|=\frac{\mu_{0} N I}{2 b} \Rightarrow I=\frac{|\bar{B}(0)| 2 b}{\mu_{0} N}=\frac{\left(0.05 \times 10^{-3}\right)\left(2 * 6 \times 10^{-2}\right)}{4 \pi \times 10^{-7}(2)}=2.39 \mathrm{~A}$
b) A uniformly wound coil having 160 mm lenghth and diameter of 40 mm . If the current passing through the coil was $1.5 A$ and the magnetic field measured at $z=0.002 \mathrm{~mm}$ was 1.4137 mT . Calculate the number of turns.
$z=0.002 \mathrm{~mm} \ll L=160 \mathrm{~mm} \Rightarrow|\bar{B}(z)| \cong \frac{\mu_{0} N I}{L}$
$N=\frac{|\bar{B}(z)| L}{\mu_{0} I}=\frac{\left(1.4137 \times 10^{-3}\right)\left(16 \times 10^{-3}\right)}{4 \pi \times 10^{-7}(1.5)}=119.999=120$

Problem 3)

a) A straight conductor of length 50 mm and carrying a current of $4 A$ is placed in region of uniform magnetic field. The magnetic force on the conductor was 50 mN with a direction given in picture below.

1. Calculate the magnitude of magnetic field.
$F=I B L \quad \Rightarrow \quad B=\frac{F}{I L}=\frac{50 \times 10^{-3}}{4\left(50 \times 10^{-3}\right)}=0.25 \mathrm{~T}$
2. Specify the direction of the magnetic field on the figure.

Right hand rule:
$a_{F}=a_{I} \times a_{B} \quad$ the magnetic field point out of the page

Formula Sheet

$$
\begin{gathered}
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
\end{gathered}
$$

$$
\begin{aligned}
& |\bar{B}|=\frac{\mu_{0} I}{2 \pi r} \\
& |\bar{B}|=\frac{\mu_{0} I}{2 \pi x}+\frac{\mu_{0} I}{2 \pi(x-a)} \\
& |\bar{B}|=\frac{\mu_{0} I}{2 \pi x}-\frac{\mu_{0} I}{2 \pi(x-a)} \\
& |\bar{B}|=\frac{\mu_{0} I b^{2}}{2\left(z^{2}+b^{2}\right)^{3 / 2}} \\
& |\bar{B}(0)|=\frac{\mu_{0} N I}{2 b} \\
& |\bar{B}(z)|=\frac{\mu_{0} N I}{2 L}\left(\frac{a}{\sqrt{b^{2}+a^{2}}}-\frac{c}{\sqrt{b^{2}+c^{2}}}\right) \\
& a=z+\frac{L}{2} ; \quad c=z-\frac{L}{2} \\
& |\bar{B}(z)| \cong \frac{\mu_{0} N I}{L} \\
& F=I B L \\
& a_{F}=a_{I} \times a_{B}
\end{aligned}
$$

