A Practical Modeling Example

Lab # 12

LAB #12

A PRACTICAL MODELING EXAMPLE

OBJECTIVE

To study the design of a digital alarm clock.

THEORY
We will design a digital alarm clock that has the following terminal (port) signals:

Inputs
Clock_1sec, Reset, LoadTime, SetHours, SetMins, SetSecs, Set_AM_PM, LoadAlm, AlarmHoursIn, AlarmMinsIn, Alarm_AM_PM_In, AlarmEnable

Outputs
Hours, Mins, Secs, Hours, AM_PM, Flashing, Alarm

· The required characteristics of the digital alarm clock are:

· Timing is to be controlled from a 1 second input clock, Clock_1sec,

· To operate on a 12 hour basis with separate am/pm control,

· The value of time to be set when LoadTime is high,

· The alarm time to be set when LoadAlm is high,

· The Alarm output should go high when the current time is equal to the alarm time. The alarm should stay on until either the AlarmEnable signal goes low, which equates to turning the alarm off, or after period of 1 minute has elapsed when left on.

· If power is lost, and then powered up again, it should display the time 00:00:00 and the “Flashing” signal should be activated high. This causes the display to flash and so indicate that the alarm clock’s time needs to be set. The Flashing signal should stay high and the clock’s time should increase from zero until a new time is set.

We tackle the problem as follows. First, identify what storage elements are required. A total of 29 flip-flops are needed to hold the current clock time and set alarm time. The constituent flip-flops are listed in Table 12.1.

Function
Range
No. of bits

Clock Time
Clock time – Seconds

Clock time – Minutes

Clock time – Hours

Clock time – AM/PM

Time not set (Flashing)

(range 0 to 59)

(range 0 to 59)

(range 0 to 11)

(1 bit toggle)

(1 bit toggle)

Total Flip-flops =
6

6

4

1

1

18

Alarm Time
Alarm time – Minutes

Alarm time – Hours

Alarm time – AM/PM
(range 0 to 59)

(range 0 to 11)

(1 bit toggle)

Total Flip-flops =

6

4

1

11

Total flip-flops =
29

Table 12.1: Constituents flip-flops for the alarm clock

The problem of designing is most easily solved by splitting the problem into two; one for the clock time and the other for the alarm time. The Verilog model shows this split. In the Verilog model, a single always statement is used to model the clock time, but two always statements are needed to implement the alarm time because both synchronous and combinational output logic is needed.

The first always statements instantiate the 18 flip-flops needed to hold the current value of time and compute its next incremental value. The word “time” in this context means hours, minutes, seconds plus the AM/PM indication. It uses nested if statements, the outermost of which waits for a rising edge on the 1 second clock signal Clock_1sec. If a rising edge has occurred, the time and Flashing signals are updated. Notice that no matter which branch is taken through the nested if statements, new values for Hours, Mins, AM_PM and Flashing are always defined and avoids extra unneeded latches being inferred.

The second part of the Verilog model hold the alarm time (AlarmHours, AlarmMins and Alarm_AM_PM) and checks to see if the current time is equal to the alarm time. Notice that seconds are not used for the alarm time. If the two time values compare and the AlarmEnable signal is at logic 1 the Alarm signal is activated. The alarm will stay on until turned off by the AlarmEnable changing to logic 0 or for a maximum of 1 minute if AlarmEnable stays at logic 1.

module ALARM CLOCK

 (Clock_lsec, Reset, LoadTime, LoadAlm, SetSecs,

 SetMins, SetHours, Set_AM_PM, AlarmMinsIn,

 AlarmHoursIn, Alarm_AM_PM_In, Secs, Mins, Hours,

 AM_PM, Alarm, Flashing)

 input Clock_lsec, Reset;

 input LoadTime, LoadAlm;

 input [0:5] SetSecs, SetMins;

 input [0:3] SetHours;

 input Set AM PM;

 input [0:5] AlarmMinsIn;

 input [0:3] AlarmHoursIn;

 input Alarm_AM_PM_In;

 input AlarmEnable;

 output [0:5] Secs, Mins;

 output [0:3] Hours;

 output AM_PM, Flashing, Alarm;

 reg [0:5] AlarmMins;

 reg [0:3) AlarmHours;

 reg Alarm_AM_PM;

 reg [0:5] Secs, Mins;

 reg [0:3) Hours;

 reg AM_PM, Flashing, Alarm;

 //**

 // Calculate the next value of time:

 // Secs, Mins, Hours, AM_PM & Flashing.

 //**

 always @ (posedge Clock_lsec)

 // Synchronous Reset

 //-------------------------

 if (Reset)

 begin

 Secs = 0;

 Mins = 0;

 Hours = 0;

 AM_PM = 0;

 Flashing =1;

 end

 // Set the time

 else if (LoadTime)

 begin

 Secs = SetSecs;

 Mins = SetMins;

 Hours = SetHours;

 AM PM = Set_AM_PM;

 Flashing = 0;

 end

 // Increment time

 else

 begin

 Flashing = Flashing; // Unchanged

 if (Secs == 59) // Reached 59

 begin

 Secs = 0; // Reset secs

 if (Mins == 59) // Reached 59

 begin

 Mins = 0; // Reset mins

 if (Hours==11) // Reached 11

 begin

 Hours = 0; // Reset hours

 AM_PM = !AM_PM; // Toggle AM_PM

 end

 else

 begin

 Hours = Hours + 1; // Increment

 AM_PM = AM_PM; // Unchanged

 end

 end

 else

 begin

 Mins = Mins + 1; // Increment

 Hours = Hours; // Unchanged

 AM PM = AM PM; // Unchanged

 end

end

 else

 begin

 Secs = Secs + l;

// Increment

 Mins = Mins;

// Unchanged

 Hours = Hours;

// Unchanged

 AM_PM = AM_PM;

// Unchanged

 end

 end

 //**

 // Store set alarm time when "LoadAlm" active.

 //**

 always @(posedge Clock_lsec)

 if (Reset)

 begin

 AlarmMins = 0;

 AlarmHours = 0;

 Alarm_AM_PM = 0;

 end

 else if (LoadAlm)

 begin

 AlarmMins = AlarmMinsIn;

 AlarmHours = AlarmHoursIn;

 Alarm_AM_PM = Alarm_AM_PM_In;

 end

 else

 begin

 AlarmMins = AlarmMins;

 AlarmHours = AlarmHours;

 Alarm_AM_PM = Alarm_AM_PM;

 end

 //***

 // Compare current time with the set alarm time.

 // Sets alarm for 1 minute (ignores seconds).

 //***

 always @(Hours or Mins or AM_PM or AlarmEnable or

 AlarmHours or AlarmMins or Alarm_AM_PM)

 if (Hours == AlarmHours && Mins== AlarmMins &&

 AM_PM == Alarm_AM_PM && AlarmEnable ==1)

 Alarm =1;

 else

 Alarm = 0;

 endmodule
VLSI Design – VLSID

4

