Modeling Finite State Machines

Lab # 11

Lab #11
MODELING FINITE STATE MACHINES

OBJECTIVE
To study various techniques of translating FSM in to Verilog HDL description.

THEORY
[image: image1.wmf]Designers of digital circuits are invariably faced with needing to design circuits that perform specific sequences of operations, for example, controllers used to control the operation of other circuits. Finite State Machines (FSMs) have proven to be a very efficient means of modeling sequencer circuits. By modeling FSMs in a hardware description language for use with synthesis tools, designers can concentrate on modeling the desired sequences of operations without being overly concerned with circuit implementation; this is left to the synthesis tool. FSMs are an important part of hardware design and hence HDL hardware modeling.

A designer should consider the different aspects of an FSM before attempting to write a model. A well-written model is essential for a functionality correct circuit that meets requirements in the most optimal manner. A badly written model may not meet either criteria. For this reason, it is important to fully understand FSMs and to be familiar with the different HDL modeling issues.

The Finite State Machine
A FSM is any circuit specifically designed to sequence through specific patterns of states in a predetermined sequential manner, and which conforms to the structure shown in fig 10.1. A state is represented by the binary value held on the current register. The FSM structure consists of three parts and may, or may not, be reflected in the structure of the HDL code that is used to model it.

Fig 11.1: Simple structure of a finite state machine

1. Current State Register.
Register of n-bit flip-flops used to hold the current state of the FSM. Its value represents the current stage in the particular sequence of operations being performed. When operating, it is clocked from a free running clock source.

2. Next State Logic.
Combinational logic used to generate the next stage (state) in the sequence. The next state output is a function of the state machine's inputs and its current state.

3. Output Logic. Combinational logic is used to generate required output signals. Outputs are a function of the state register output and possibly state machine inputs.

The State Table and State Diagram
A state diagram is a graphical representation of a state machine’s sequential operation and is often supported as a direct input to commercial synthesis tools from which synthesized circuits and HDL simulation models are generated. Whether to use a state diagram or HDL entry method is often a choice for the designer, provided the tools are available.

[image: image2.wmf]
Fig 11.2: Two equivalent state diagrams

Fig 11.2 shows tow state diagram representations of the same five states, state machine.

FSM Design and Modeling Issues
State machine design and modeling issues to consider are:

1-HDL coding style,

2-Resets and fail safe behavior,

3-State encoding,

4-Mealy or Moore type outputs.

[image: image3.wmf]The structure of a state machine can take one of three forms, fig 11.3, and consists of a combinational "Next State Logic" block, a sequential "Current State Register" block, and an optional combinational "Output Logic " block. Output logic is not needed if the outputs only come direct from the state register flip-flops. The current state is not stored in flip-flops; latches would cause state oscillations when transparent. The next state and output logic blocks may contain additional sequential logic, inferred from within the body of the model, but is not considered part of the state machine. A state machine can only be in one state at any given time, and each active transition of the clock causes it to change from its current state to the next as defined by the next state logic.

Fig 11.3: FSM structures with Mealy, Moore and combined Mealy Moore outputs

A state machine with n state flip-flops has 2n possible binary numbers that can be used to represent states. Often, not all 2n numbers are needed, so the unused ones should be designed not to occur during normal operation. A state machine with five states, for example, requires a minimum of three flip-flops in which case there are (8 - 5 = 3) unused binary numbers.

1-
HDL coding style

The HDL code may be structured into three separate parts representing the three parts of a state machine, see fig 11.3. Alternatively, different combinations of blocks can be combined in the model. Either way, the coding style is independent of the state machine being designed.

The next state logic is best modeled using the case statement, and the default clause used in a case statement, avoids having to explicitly define all 2n values that are not part of the state machine.

2-
Resets and fail safe behavior
Depending on the application, a reset signal may not be available, there may only be a synchronous or asynchronous reset, or there may be both. To guarantee fail-safe behavior, one of two things must be done, depending on the type of reset:

Use an asynchronous reset. This ensures the state machine is always initialized to a known valid state, before the first active clock transition and normal operation commences. This has the advantage of not needing to decode any unused current state values, and so minimizes the next state logic.

With no reset or asynchronous reset. In the absence of an asynchronous reset there is no way of predicting the initial value of the state register flip-flops when implemented in an IC and "powered up". It could power up and become permanently stuck in an uncoded state. All 2n binary values must, therefore, be decoded in the next state logic, whether they form part of the state machine or not.

For modeling a reset, an if statement can be used, and if asynchronous, the reset must be included in the event list of always statement with the posedge or negedge clause.

3-
State encoding

The way in which binary numbers are assigned to states is called the state encoding. The different state encoding formats commonly used are:

Sequential

gray

Johnson

One-hot

Define your own

Defined by synthesis

4-
Mealy or Moore type outputs
The structures of a Mealy, a Moore and a combined Mealy /Moore state machines are shown in fig 11.3. A Mealy State machine has outputs that are a function of the current state, and primary inputs. A Moore State machine has outputs that are a function of the current state only, and so includes outputs direct from the state register. If outputs come direct from the state register only, there is no output logic. A combined Mealy / Moore state machine has both types of output. The choice between modeling Mealy or Moore type outputs is clearly design dependent.

Example 11.1: A Bad and a good coded models of a three state FSM.
Bad and good models of a three state FSM are modeled to the state diagram in fig 11.4. The two Verilog models use one of three parameter values for the states, and so the state [image: image4.png]numbers are defined in the model itself.

Fig 11.4:
FSM1 state disgrams

Bad Model

The first model, FSM1_BAD, is incorrect for the reasons listed below.

1-The state machine has three states requiring two flip-flops, but two flip-flop have four possible binary values, so one is unused. There is no reset and there is no next state value defined for the unused state. This means the physical state machine could be implemented such that it has the potential of "powering up" and becoming stuck in this unused state.

2- the current state, next state and output logic, are all defined in the same Verilog always block. Because the Verilog always block is triggered off the positive edge the clock, the Read and Write output assignments also infer an extra flip-flop.

module FSM1_BAD (Clock, SlowRAM, Read, Write);

input Clock, SlowRAM;

output Read, Write;

reg Read , Write;

always@(posedge Clock)

 begin: SEQ_AND_COMB

 parameter ST_Read = 0, ST_Write = 1, Delay =2;

 integer State;

 case (State)

 ST_Read:

 begin

 Read = 1;

 Write = 0;

 State = ST_Write;

 end

 ST_Write:

 begin

 Read = 0;

 Write =1;

 if(SlowRAM = = 1)

 State =ST_Dealy ;

 else

 State = ST_Read ;

 end

 ST_Delay :

 begin

 Read = 0;

 Write =0;

 State =ST_Read;

 end

 endcase
// Because there is no default and therefore no new value for Read

// and Write, the 2 extra outputs flip-flops will also have

 // feedback logic around them

end

endmodule

Good Model
The second model, FSM1_GOOD, shows the corrected version. The sequential current state logic has been separated from the combined combinational next state and output logic

module FSM1_GOOD(Clock, Reset, SlowRAM, Reset, Write);

input clock, Reset, SlowRAM;

output Read, Write;

reg Read, Write;

parameter [1:0] ST_Read = 0, ST_Write = 1, ST_Delay = 2;

reg [1:0] CurrentState, NextState;

always @(posedge Clock)

 begin: SEQ

 if(Reset)

CurrentState = ST_Read;

 else

CurrentState = NextState;

 end

always @ (CurrentState)

 begin :COMB

 case(CurrentState)

 ST_Read:

 begin

 Read = 1;

 Write = 0;

 NextState = ST_Write;

 end

 ST_Write:

 begin

 Read =0;

 Write =1;

 if(SlowRAM)

 NextState = ST_Delay;

 else

 NextState = ST_Read;

 end

 ST_Delay:

 begin

 Read = 0;

 Write = 0;

 NextState = ST_Read;

 end

 default:

 begin

 Read = 0;

 Write = 0;

 NextState = ST_Read;

 end

 endcase

 end

endmodule

[image: image5.wmf]
The synthesized circuit is shown below.

EXERCISE

Write a synthesizable model of an FSM the diagram of which is given below.

[image: image6.png]
� EMBED CDraw5 ���

� EMBED CDraw5 ���

VLSI Design – VLSID

8

[image: image7.png][image: image8.png]_1055059788.unknown

_1055060214.unknown

